【題目】如圖,已知四邊形為梯形,,,四邊形為矩形,且平面平面,又,.
(1)求證:;
(2)求點到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接、,利用三線合一得出,,利用直線與平面垂直的判定定理可證明出平面,即可得出;
(2)過點在平面內(nèi)作,垂足為點,證明出平面,并計算出三邊邊長,然后利用等面積法求出,即為點到平面的距離.
(1)如下圖所示,取的中點,連接、,
四邊形為矩形,,
平面平面,平面平面,平面,
平面,
平面,,,
四邊形為梯形,,,,
,為的中點,,
同理可得,,
又,平面.
平面,;
(2)如下圖所示,過點在平面內(nèi)作,垂足為點,
由(1)知,平面,平面,.
,,平面.
由(1)知,平面,平面,,
,
,,
平面,,平面,
平面,,
由于四邊形為直角梯形,且,,
,,則.
由等面積法可得.
因此,點到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦點分別為,點是橢圓上的點,面積的最大值是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,點是橢圓上的點,是坐標(biāo)原點,若判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校積極開展“服務(wù)社會,提升自我”的志愿者服務(wù)活動,九年級的五名同學(xué)(三男兩女)成立了“交通秩序維護(hù)”小分隊.若從該小分隊中任選兩名同學(xué)進(jìn)行交通秩序維護(hù),則恰是一男一女的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求證:當(dāng)時,;
(Ⅱ)存在,使得成立,求a的取值范圍;
(Ⅲ)若對恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人同時參加一個外貿(mào)公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進(jìn)入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨立互不影響.
(1)求這兩人至少有一人通過筆試的概率;
(2)求這兩人筆試都通過卻都未被錄用的概率;
(3)記這兩人中最終被錄用的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為.
(1)求曲線的方程;
(2)已知點是曲線上但不在坐標(biāo)軸上的任意一點,曲線與軸的焦點分別為,直線和分別與軸相交于兩點,請問線段長之積是否為定值?如果還請求出定值,如果不是請說明理由;
(3)在(2)的條件下,若點坐標(biāo)為(-1,0),設(shè)過點的直線與相交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過多年的運作,“雙十一”搶購活動已經(jīng)演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2018年“雙十一”網(wǎng)購狂歡節(jié),某廠家擬投入適當(dāng)?shù)膹V告費,對網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),每一件產(chǎn)品的銷售價格定為元,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com