2.已知函數(shù)f(x)=ax3+3x2-6,若f′(-1)=4,則實(shí)數(shù)a的值為( 。
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

分析 先求函數(shù)f(x)=ax3+3x2-6的導(dǎo)數(shù),結(jié)合f′(-1)=4,即可求出a.

解答 解:f′(x)=3ax2+6x,
又f′(-1)=4,
∴f′(-1)=3a-6=4,
解得:a=$\frac{10}{3}$.
故選:D.

點(diǎn)評 本題主要考查函數(shù)的導(dǎo)數(shù)的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:選擇題

已知函數(shù),則下列結(jié)論正確的是( )

A.導(dǎo)函數(shù)為

B.函數(shù)的圖象關(guān)于直線對稱

C.函數(shù)在區(qū)間上是增函數(shù)

D.函數(shù)的圖象可由函數(shù)的圖象向右平移個(gè)單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)x,y,z為整數(shù),且x2+y2+z2=3,證明:
(1)xy+yz+zx≤3;
(2)$\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知?jiǎng)訄A經(jīng)過定點(diǎn)D(1,0),且與直線x=-1相切,設(shè)動圓圓心E的軌跡為曲線C
(Ⅰ)求取曲線C的方程;
(Ⅱ)設(shè)過點(diǎn)P(1,2)的直線l1,l2分別與曲線C交于A,B兩點(diǎn),直線l1,l2的斜率存在,且傾斜角互補(bǔ),證明:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)A是拋物線y2=2px(p>0)上一點(diǎn),F(xiàn)為其焦點(diǎn),以|FA|為半徑的圓交準(zhǔn)線于B,C兩點(diǎn),△FBC為正三角形,且△ABC的面積是$\frac{128}{3}$,則拋物線的方程是( 。
A.y2=12xB.y2=14xC.y2=16xD.y2=18x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a(x-1)2+lnx+1,g(x)=f(x)-x,其中a∈R.
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時(shí),若y=f(x)圖象上的點(diǎn)都在$\left\{\begin{array}{l}x≥1\\ y≤x\end{array}\right.$所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足(1-i)z=ai+1,在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點(diǎn)在第一象限(其中i為虛數(shù)單位),則實(shí)數(shù)a的取值可以為( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(Ⅰ)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}$>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”.當(dāng)a=4時(shí),試問y=f(x)是否存在“類對稱點(diǎn)”,若存在,請至少求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{3}}}{2}$,A,B是橢圓的左、右頂點(diǎn),P是橢圓上不同于A,B的一點(diǎn),直線PA,PB斜傾角分別為α,β,則|tanα-tanβ|的最小值為1.

查看答案和解析>>

同步練習(xí)冊答案