13.設(shè)x,y,z為整數(shù),且x2+y2+z2=3,證明:
(1)xy+yz+zx≤3;
(2)$\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$≥3.

分析 (1)運(yùn)用重要不等式可得x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,累加即可得證;
(2)由柯西不等式可得(xy+yz+zx)($\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$)≥($\sqrt{xy•\frac{{z}^{2}}{xy}}$+$\sqrt{yz•\frac{{x}^{2}}{yz}}$+$\sqrt{zx•\frac{{y}^{2}}{zx}}$)2,化簡整理,結(jié)合(1)的結(jié)論即可得證.

解答 證明:(1)由x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,
相加可得x2+y2+z2≥xy+yz+zx,
由x2+y2+z2=3,可得xy+yz+zx≤3(當(dāng)x=y=z取得等號);
(2)由柯西不等式可得(xy+yz+zx)($\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$)
≥($\sqrt{xy•\frac{{z}^{2}}{xy}}$+$\sqrt{yz•\frac{{x}^{2}}{yz}}$+$\sqrt{zx•\frac{{y}^{2}}{zx}}$)2=(z+x+y)2
=x2+y2+z2+2(xy+yz+zx)=3+2(xy+yz+zx),
則$\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$≥2+$\frac{3}{xy+yz+zx}$,
由(1)可得$\frac{1}{xy+yz+zx}$≥$\frac{1}{3}$,
則$\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$≥2+1=3,
故原不等式成立.

點(diǎn)評 本題考查不等式的證明,注意運(yùn)用重要不等式和柯西不等式,以及不等式的性質(zhì),考查推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如果無窮數(shù)列滿足下列條件:①;②存在實(shí)數(shù),使得,其中,那么我們稱數(shù)列為Ω數(shù)列.

(1)設(shè)是各項(xiàng)為正數(shù)的等比數(shù)列,是其前項(xiàng)和,,,證明:數(shù)列是Ω數(shù)列;

(2)設(shè)數(shù)列的通項(xiàng)為,且是Ω數(shù)列,求的取值范圍;

(3)設(shè)數(shù)列是各項(xiàng)均為正整數(shù)的Ω數(shù)列,問:是否存在常數(shù),使得,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題p:x∈A,且A={x|a-1<x<a+1},命題q:x∈B,且B={x|y=$\sqrt{{x}^{2}-3x+2}$}.
(Ⅰ)若A∪B=R,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a為實(shí)常數(shù),函數(shù)f(x)=lnx,g(x)=ax-1.
(Ⅰ)討論函數(shù)h(x)=f(x)-g(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)與g(x)有兩個(gè)不同的交點(diǎn)A(x1,y1)、B(x2,y2),其中x1<x2
   (。┣髮(shí)數(shù)a的取值范圍;
   (ⅱ)求證:-1<y1<0,且e${\;}^{{y}_{1}}$+e${\;}^{{y}_{2}}$>2.(注:e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$a={log_2}{3^{-1}}$,${(\frac{1}{2})^b}=5$,c=log32.則a,b,c的大小關(guān)系為:b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):
①f(x)=2x;     ②f(x)=x2+1;    ③f(x)=sin(x+$\frac{π}{4}$);④f(x)是定義在實(shí)數(shù)集R的奇函數(shù),且對一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是“倍約束函數(shù)”的是①④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:y=$\frac{1}{2}$x2,過點(diǎn)Q(1,1)的動直線與拋物線C交于不同的兩點(diǎn)A,B,分別以A,B為切點(diǎn)作拋物線的切線l1,l2,直線l1,l2交于點(diǎn)P
(Ⅰ)求動點(diǎn)P的軌跡方程;
(Ⅱ)求△PAB面積的最小值,并求出此時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+3x2-6,若f′(-1)=4,則實(shí)數(shù)a的值為( 。
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c均為正數(shù),且a+2b+3c=9.求證:$\frac{1}{4a}$+$\frac{1}{18b}$+$\frac{1}{108c}$≥$\frac{1}{9}$.

查看答案和解析>>

同步練習(xí)冊答案