A. | $(0,\frac{{\sqrt{3}}}{3})$ | B. | $[0,\sqrt{3}]$ | C. | $[\frac{{\sqrt{3}}}{3},\sqrt{3})$ | D. | $(0,\sqrt{3})$ |
分析 用點(diǎn)斜式設(shè)出直線方程,根據(jù)直線和圓有交點(diǎn)、圓心到直線的距離小于或等于半徑可得$\frac{|0-0+\sqrt{3}k-1|}{\sqrt{{k}^{2}+1}}$<1,由此求得斜率k的范圍.
解答 解:由題意可得點(diǎn)$P(-\sqrt{3},-1)$在圓x2+y2=1的外部,故要求的直線的斜率一定存在,設(shè)為k,
則直線方程為y+1=k(x+$\sqrt{3}$),即 kx-y+$\sqrt{3}$k-1=0.
根據(jù)直線和圓有交點(diǎn)、圓心到直線的距離小于半徑可得$\frac{|0-0+\sqrt{3}k-1|}{\sqrt{{k}^{2}+1}}$<1,
即 3k2-2$\sqrt{3}$k+1≤k2+1,解得0<k<$\sqrt{3}$,
故選:D.
點(diǎn)評 本題主要考查用點(diǎn)斜式求直線方程,點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 81 | B. | 82 | C. | 85 | D. | 86 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
月份 | 一月 | 二月 | 三月 | 四月 |
交費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -sinx-cosx | B. | cosx-sinx | C. | sinx-cosx | D. | sinx+cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}c{m^3}$ | B. | $\frac{{4\sqrt{3}}}{3}c{m^3}$ | C. | $\frac{{8\sqrt{3}}}{3}c{m^3}$ | D. | $\sqrt{3}c{m^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}-\frac{y^2}{9}=1$ | B. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1 | ||
C. | $\frac{x^2}{9}-\frac{y^2}{9}=1$或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{41}$-$\frac{{y}^{2}}{41}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com