8.設(shè)p:$\left\{\begin{array}{l}{4x+3y-12≥0}\\{3-x≥0}\\{x+3y≤12}\end{array}\right.$(x,y∈R),q:x2+y2≤r2(x,y∈R,r>0)若p是q的充分不必要條件,則r的取值范圍是[3$\sqrt{2}$,+∞).

分析 根據(jù)充分條件和必要條件的定義結(jié)合線性規(guī)劃的知識進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖,x2+y2≤r2(x,y∈R,r>0)表示以原點為圓心半徑為r的圓及其內(nèi)部,
若p是q的充分不必要條件,
則三角形區(qū)域在圓的內(nèi)部,
A,B,C三點,OA的長度最大,
則只要保證A在圓內(nèi)或圓上即可,
由$\left\{\begin{array}{l}{x=3}\\{x+3y=12}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3),
則滿足OA=$\sqrt{{3}^{2}+{3}^{2}=\sqrt{9+9}}=\sqrt{18}$=3$\sqrt{2}$,
則r≥3$\sqrt{2}$,
故答案為:[3$\sqrt{2}$,+∞).

點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)充分條件和必要條件的關(guān)系轉(zhuǎn)化為兩個區(qū)域的包含關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知p:($\frac{x-4}{3}$)2≤4,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+|x-a|.
(1)當(dāng)a=1時,求函數(shù)f(x)的最小值;
(2)試討論函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在四邊形ABCD中,$\overrightarrow{AB}•\overrightarrow{BC}$=0,且$\overrightarrow{AB}=\overrightarrow{DC}$,則四邊形ABCD是( 。
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}+{(\sqrt{2}-1)^0}$
(2)$\frac{5}{2}lg2-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}-lg7$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$,$\overrightarrow{a}$=(y,m+x),$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,則m的最小值為( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)命題p:函數(shù)f(x)=x3在R上為增函數(shù);命題q:函數(shù)f(x)=sin($\frac{π}{2}$+x)為奇函數(shù),則下列命題中真命題是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,陰影部分區(qū)域中的任意點(含邊界)都滿足不等式x-2y>a,則實數(shù)a的取值范圍為( 。
A.(-∞,1)B.(-∞,-2)C.(-2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若數(shù)列{an}的前n項和為Sn,且滿足Sn=$\frac{3}{2}$an-3,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案