已知函數(shù)f(x)=-x2+4x-3lnx在[t,t+1]上不單調(diào),則t的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)f(x)的圖象向右平移1個(gè)單位長(zhǎng)度,所得圖象與曲線y=ex關(guān)于y軸對(duì)稱,則f(x)=( )
A.ex+1 B.ex-1
C.e-x+1 D.e-x-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,現(xiàn)要在邊長(zhǎng)為100 m的正方形ABCD內(nèi)建一個(gè)交通“環(huán)島”.以正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為x m(x不小于9)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為x2 m的圓形草地.為了保證道路暢通,島口寬不小于60 m,繞島行駛的路寬均不小于10 m.
(1)求x的取值范圍;(運(yùn)算中取1.4)
(2)若中間草地的造價(jià)為a元/m2,四個(gè)花壇的造價(jià)為ax元/m2,其余區(qū)域的造價(jià)為元/m2,當(dāng)x取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)y=x2-lnx的單調(diào)遞減區(qū)間為( )
A.(-1,1] B.(0,1]
C.[1,+∞) D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=(m-2)x2+(m2-4)x+m是偶函數(shù),函數(shù)g(x)=-x3+2x2+mx+5在(-∞,+∞)內(nèi)單調(diào)遞減,則實(shí)數(shù)m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)是f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=x2-1與函數(shù)g(x)=alnx(a≠0).
(1)若f(x),g(x)的圖象在點(diǎn)(1,0)處有公共的切線,求實(shí)數(shù)a的值;
(2)設(shè)F(x)=f(x)-2g(x),求函數(shù)F(x)的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com