8.函數(shù)f(x)=cos(2π-x)-x3sinx是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

分析 化簡f(x),求出f(x)的定義域,并判斷f(-x)和f(x)的關系,得出結論.

解答 解:f(x)=cosx-x3sinx,定義域為R,
∵f(-x)=cos(-x)-(-x)3sin(-x)=cosx-x3sinx=f(x).
∴f(x)是偶函數(shù).
故選:B.

點評 本題考查了函數(shù)奇偶性的判斷,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象如圖所示,f(x0)=f(0),則正確的選項是( 。
A.$φ=\frac{π}{6},{x_0}=\frac{5}{3}$B.$φ=\frac{π}{6},{x_0}=1$C.$φ=\frac{π}{3},{x_0}=\frac{5}{3}$D.$φ=\frac{π}{3},{x_0}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若復數(shù)z滿足i•z=1+i,則z的共軛復數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若隨機變量Y~B(5,$\frac{1}{4}$),則EY為(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.若f(x)=2arcsin(2-x)的值域是(-$\frac{π}{3}$,π],求它的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,若a=2$\sqrt{3}$,sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,sinBsinC=cos2$\frac{A}{2}$,求∠A、∠B及b、c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求y=ln(x+$\sqrt{1+{x}^{2}}$)的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2015}(x-1),x>2}\\{sin\frac{πx}{2},0≤x≤2}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$,若f(x)=k有四個互不相等的實數(shù)根,則函數(shù)f(x)的零點為0和2;k的取值范圍為0<k<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}滿足${a_1}=1,{a_2}=2,{a_{2n+1}}={a_{2n-1}}+2,{a_{2n+2}}=3{a_{2n}},(n∈{N^*})$.數(shù)列{an}前n項和為Sn
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)若amam+1=am+2,求正整數(shù)m的值;
(Ⅲ)是否存在正整數(shù)m,使得$\frac{{{S_{2m}}}}{{{S_{2m-1}}}}$恰好為數(shù)列{an}中的一項?若存在,求出所有滿足條件的m值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案