14.在數(shù)列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0)
(Ⅰ)設bn=an+1-an(n∈N*),證明{bn}是等比數(shù)列;
(Ⅱ)當q=2時,求數(shù)列{an}的通項公式.

分析 (Ⅰ)推導出bn=an+1-an=qbn-1,n≥2,b1=a2-a1=1,q≠0,由此能證明{bn}是首項為1,公比為q的等比數(shù)列.
(Ⅱ)由a2-a1=1,a3-a2=q,…,${a}_{n}-{a}_{n-1}={q}^{n-2}$,利用累加法能求出數(shù)列{an}的通項公式.

解答 證明:(Ⅰ)∵數(shù)列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0),
∴an+1-an=q(an-an-1),即bn=an+1-an=qbn-1,n≥2,
又b1=a2-a1=1,q≠0,
∴{bn}是首項為1,公比為q的等比數(shù)列.
解:(Ⅱ)由(Ⅰ)得a2-a1=1,a3-a2=q,
…,${a}_{n}-{a}_{n-1}={q}^{n-2}$,
將以上各式相加,得:
an-a1=1+q+…+qn-1=1+2+…+2n-2=$\frac{1-{2}^{n-1}}{1-2}$=2n-1-1.
∴an=2n-1
n=1時,上式也成立,
∴數(shù)列{an}的通項公式an=2n-1

點評 本題考查等比數(shù)列的證明,考查數(shù)列的通項公式的求法,是中檔題,解題時要認真審題,注意累加法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.下列關系中正確的個數(shù)為( 。
①0∈{0}
②Φ?{0}
③{0,1}⊆{(0,1)}.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow m=(\sqrt{3}sin2x+2,cosx),\overrightarrow n=(1,2cosx)$,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求函數(shù)f(x)的最小正周期及在$({-\frac{π}{6},\frac{π}{2}}]$上的值域;
(2)在△ABC中,若f(A)=4,b=4,△ABC的面積為$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知圓C:(x-3)2+(y-4)2=1,點A(-1,0),點P是圓上的動點,則d=|PA|2的最大值為33+8$\sqrt{2}$,最小值為33-8$\sqrt{2}$,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知定義域為R的函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}滿足,a1=2,$({{a_{n+1}}-{a_n}})g({a_n})+f({a_n})=0\;({n∈{N^*}})$
(1)求數(shù)列{an}的通項公式;
(2)設bn=3f(an)-g(an+1),求數(shù)列{bn}的最值及相應的n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.不等式x2+ax-b<0的解集是(2,3),則bx2-ax-1>0的解集是( 。
A.$(\frac{1}{3},\frac{1}{2})$B.$(\frac{1}{6},1)$C.$(-\frac{1}{2},-\frac{1}{3})$D.$(-∞,-\frac{1}{2})∪(-\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果函數(shù)f(x)=(a2-1)x在R上是減函數(shù),那么實數(shù)a的取值范圍是( 。
A.|a|>1B.|a|<2C.|a|>3D.1<|a|<$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.對于函數(shù)f(x)=$\frac{2}{{3}^{x}+1}$+m,(m∈R)
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義證明
(2)是否存在實數(shù)m使函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.$(1+\sqrt{2}){m^2}$B.$(1+2\sqrt{2}){m^2}$C.$(2+\sqrt{2}){m^2}$D.$(2+2\sqrt{2}){m^2}$

查看答案和解析>>

同步練習冊答案