10.在△ABC中,已知$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2}{tanB}$,則cosB的最小值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 已知等式左邊利用同角三角函數(shù)間基本關(guān)系切化弦后,再利用正弦、余弦定理化簡(jiǎn),整理得到2b2=a2+c2,代入表示出的cosB中,利用基本不等式即可求出cosB的最小值.

解答 解:∵$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2}{tanB}$,
∴$\frac{cosA}{sinA}$+$\frac{cosC}{sinC}$=$\frac{2cosB}{sinB}$,可得:$\frac{cosAsinC+sinAcosC}{sinAsinC}$=$\frac{sinB}{sinAsinC}$=$\frac{2cosB}{sinB}$,
∴cosB=$\frac{si{n}^{2}B}{2sinAsinC}$,
又∵$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$,cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
∴$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{(\frac{2R})^{2}}{2×\frac{a}{2R}×\frac{c}{2R}}$=$\frac{^{2}}{2ac}$,可得:2b2=a2+c2,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-\frac{{a}^{2}+{c}^{2}}{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}}{4ac}$≥$\frac{2ac}{4ac}$=$\frac{1}{2}$,
∴cosB的最小值為$\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了正弦、余弦定理,基本不等式的應(yīng)用以及同角三角函數(shù)間的基本關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=4,AC=2$\sqrt{3}$,BD=2,又點(diǎn)E在側(cè)棱PC上,且PC⊥平面BDE.
(1)求線段CE的長(zhǎng);
(2)求點(diǎn)A到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知關(guān)于x的不等式|x-a|≤b的解集為{x|-1≤x≤3}.
(1)求a,b的值;
(2)若(y-a)(y-b)<0,求z=$\frac{1}{y-a}$+$\frac{1}{b-y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|2x-1|+|x-a|,g(x)=x-1.
(1)當(dāng)a=-1時(shí),求不等式f(x)<g(x)的解集.
(2)如果?x∈R,f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,一個(gè)底面半徑為R的圓柱被與底面成30°二面角的平面所截,截面是一個(gè)橢圓,則該橢圓的焦距是( 。
A.RB.2RC.$\frac{{\sqrt{3}}}{3}$RD.$\frac{{2\sqrt{3}}}{3}$R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tan($\frac{π}{4}$+α)=$\frac{1}{3}$.
(1)求$\frac{sin2α-co{s}^{2}α}{1+sin2α}$的值;
(2)若α為直線l的傾斜角,當(dāng)直線l與曲線C:x=1+$\sqrt{2y-{y}^{2}}$有兩個(gè)交點(diǎn)時(shí),求直線l的縱截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|x-$\sqrt{2}$|-|x+$\sqrt{2}$|最大值為M,
(1)求實(shí)數(shù)M的值;
(2)若?x∈R,f(x)≥t2-(2+$\sqrt{2}$)t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x+1|,x≤1}\\{(x-a)^{2},x>1}\end{array}\right.$,若y=f(x)-a-1恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是-1≤a≤0或a=1或a>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,△PAD與正方形ABCD共用一邊AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,點(diǎn)E是棱PA的中點(diǎn).
(1)求證:PC∥平面BDE;
(2)若直線PA與平面ABCD所成角為60°,求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案