分析 (1)函數(shù)y=$\sqrt{x}$是凸函數(shù).運(yùn)用分析法,設(shè)x1,x2∈[0,+∞),由新定義即可得到結(jié)論;
(2)由凸函數(shù)的定義,結(jié)合對(duì)數(shù)函數(shù)和基本不等式即可得到a>1;
(3)由題意可得0<mx2+x≤1,運(yùn)用參數(shù)分離可得-$\frac{1}{x}$<m≤$\frac{1-x}{{x}^{2}}$在x∈(0,1]恒成立,分別求得左右兩邊的最值,即可得到所求范圍.
解答 解:(1)函數(shù)y=$\sqrt{x}$是凸函數(shù).
理由是設(shè)x1,x2∈[0,+∞),$\sqrt{\frac{{x}_{1}+{x}_{2}}{2}}$≥$\frac{1}{2}$($\sqrt{{x}_{1}}$+$\sqrt{{x}_{2}}$),即為:
$\frac{{x}_{1}+{x}_{2}}{2}$≥$\frac{1}{4}$(x1+x2+2$\sqrt{{x}_{1}{x}_{2}}$),
即為x1+x2≥2$\sqrt{{x}_{1}{x}_{2}}$,由均值不等式可得顯然成立;
(2)函數(shù)f(x)=logax在(0,+∞)上是凸函數(shù),可得:
loga$\frac{{x}_{1}+{x}_{2}}{2}$≥$\frac{1}{2}$(logax1+logax2)=loga$\sqrt{{x}_{1}{x}_{2}}$
由x1+x2≥2$\sqrt{{x}_{1}{x}_{2}}$,可得a>1;
(3)當(dāng)x∈(0,1]時(shí),不等式f(mx2+x)≤0恒成立,即為:
loga(mx2+x)≤0,即有0<mx2+x≤1,
可得-$\frac{1}{x}$<m≤$\frac{1-x}{{x}^{2}}$在x∈(0,1]恒成立,
由-$\frac{1}{x}$∈(-∞,-1],可得m>-1;
由$\frac{1-x}{{x}^{2}}$=($\frac{1}{x}$-$\frac{1}{2}$)2-$\frac{1}{4}$,$\frac{1}{x}$≥1時(shí),可得$\frac{1-x}{{x}^{2}}$≥0,
可得m≤0.
可得-1<m≤0.
點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查對(duì)數(shù)函數(shù)的單調(diào)性的運(yùn)用,以及不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)的最小正周期為$\frac{π}{2}$ | |
B. | f(x)是偶函數(shù) | |
C. | f(x)的圖象關(guān)于直線x=$\frac{kπ}{2}$(k∈Z)對(duì)稱 | |
D. | f(x)在每一個(gè)區(qū)間(kπ,kπ+$\frac{π}{2}$)(k∈Z)內(nèi)單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0} | B. | {0,3} | C. | {-1,3} | D. | {-1,0,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{3π}{8},0})$ | B. | $({\frac{π}{8},0})$ | C. | $({\frac{3π}{4},0})$ | D. | $({\frac{π}{4},0})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com