2.已知不等式ax2+bx-1<0的解集為{x|-1<x<2}.
(1)計(jì)算a、b的值;
(2)求解不等式x2-ax+b>0的解集.

分析 (1)根據(jù)不等式ax2+bx-1<0的解集,不等式與方程的關(guān)系求出a、b的值;
(2)由(1)中a、b的值解對應(yīng)不等式即可.

解答 解:(1)∵不等式ax2+bx-1<0的解集為{x|-1<x<2},
∴方程ax2+bx-1=0的兩個根為-1和2,
將兩個根代入方程中得$\left\{\begin{array}{l}{a-b-1=0}\\{4a+2b-1=0}\end{array}\right.$,
解得:a=$\frac{1}{2}$,b=-$\frac{1}{2}$;
(2)由(1)得不等式為x2-$\frac{1}{2}$x-$\frac{1}{2}$>0,
即2x2-x-1>0,
∵△=(-1)2-4×2×(-1)=9>0,
∴方程2x2-x-1=0的兩個實(shí)數(shù)根為:x1=-$\frac{1}{2}$,x2=1;
因而不等式x2-$\frac{1}{2}$x-$\frac{1}{2}$>0的解集是{x|x<-$\frac{1}{2}$或x>1}.

點(diǎn)評 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知冪函數(shù)f(x)的圖象過點(diǎn)(2,4),則f(3)的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在△ABC中,∠C=45°,D是BC邊上的一點(diǎn),且AB=7,AD=5,BD=3,則∠ADC的度數(shù)為30°,AC的長為$\frac{5\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=mx2-mx-1.若對一切實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知m∈R,復(fù)數(shù)(m2+m)+(m2-m)i是純虛數(shù),則m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(Ⅰ)求證:AB1⊥CC1
(Ⅱ)若$A{B_1}=\sqrt{6}$,求平面CAB1與平面A1AB1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=f(x)恒滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時,f(x)=2|x|-1,則函數(shù)g(x)=f(x)-|lgx|在R上的零點(diǎn)的個數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)的圖象如圖所示,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。
A.$(kπ+\frac{π}{2},kπ+\frac{3π}{2}),k∈Z$B.$(2kπ-\frac{π}{2},2kπ),k∈Z$
C.$(2kπ+\frac{π}{2},2kπ+π),k∈Z$D.$(kπ-\frac{π}{2},kπ),k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足z=(1+i)(($\frac{7}{2}$$+\frac{1}{2}$i)(i為虛數(shù)單位),則z的模為( 。
A.$\sqrt{5}$B.5C.2$\sqrt{6}$D.25

查看答案和解析>>

同步練習(xí)冊答案