某商場若將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準(zhǔn)備采用提高售價(jià),減少進(jìn)貨量的辦法來增加利潤,已知這種商品每件銷售價(jià)提高1元,銷售量就要減少10件,問該商場將銷售價(jià)每件定為多少元時(shí),才能使得每天所賺的利潤最多?銷售價(jià)每件定為多少元時(shí),才能保證每天所賺的利潤在300元以上?
4-<x<4+.
【解析】設(shè)每件提高x元(0≤x≤10),即每件獲利潤(2+x)元,每天可銷售(100-10x)件,設(shè)每天獲得總利潤為y元,由題意有y=(2+x)(100-10x)=-10x2+80x+200=-10(x-4)2+360.所以當(dāng)x=4時(shí),ymax=360元,即當(dāng)定價(jià)為每件14元時(shí),每天所賺利潤最多.
要使每天利潤在300元以上,則有-10x2+80x+200>300,即x2-8x+10<0,解得4-<x<4+.故每件定價(jià)在(14-)元到(14+)元之間時(shí),能確保每天賺300元以上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知點(diǎn)P在△ABC所在的平面內(nèi),若2+3+4=3,則△PAB與△PBC的面積的比值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
(1)已知x<,求函數(shù)y=4x-2+的最大值;
(2)已知x>0,y>0且=1,求x+y的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
某公司計(jì)劃2013年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)變量x、y滿足約束條件:則z=x-3y的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知f(x)是定義域?yàn)?/span>R的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x,那么不等式f(x+2)<5的解集是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知不等式(2+x)(3-x)≥0的解集為A,函數(shù)f(x)=(k<0)的定義域?yàn)?/span>B.
(1)求集合A;
(2)若集合B中僅有一個(gè)元素,試求實(shí)數(shù)k的值;
(3)若B?A,試求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F為底面圓周上一點(diǎn),滿足EF⊥DE.
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C中點(diǎn).求證:
(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com