分析 (Ⅰ)由題意知f(x)在$x=\frac{5π}{12}$處取得最大值,令$\frac{5π}{12}ω-\frac{π}{3}=\frac{π}{2}+2kπ,k∈Z$,求出ω的最小值;
(Ⅱ)解法一:根據題意,利用正弦函數和對數函數的單調性,列出不等式求出ω的取值范圍.
解法二:根據正弦函數的圖象與性質,結合復合函數的單調性,列出不等式求出ω的取值范圍.
解答 解:(Ⅰ)由已知f(x)在$x=\frac{5π}{12}$處取得最大值,
∴$\frac{5π}{12}ω-\frac{π}{3}=\frac{π}{2}+2kπ,k∈Z$;…(2分)
解得$ω=2+\frac{24}{5}k,k∈Z$,…(4分)
又∵ω>0,∴當k=0時,ω的最小值為2;…(5分)
(Ⅱ)解法一:∵$x∈[\frac{π}{4},\frac{π}{2}],ω>0$,
∴$\frac{π}{4}ω-\frac{π}{3}≤ωx-\frac{π}{3}≤\frac{π}{2}ω-\frac{π}{3}$,…(6分)
又∵y=lgf(x)在$x∈[\frac{π}{4},\frac{π}{2}]$內單增,且f(x)>0,
∴$\left\{{\begin{array}{l}{\frac{π}{4}ω-\frac{π}{3}>-\frac{π}{6}+2kπ}\\{\frac{π}{2}ω-\frac{π}{3}≤\frac{π}{2}+2kπ}\end{array}}\right.,k∈Z$.…(8分)
解得:$\frac{2}{3}+8k<ω≤\frac{5}{3}+4k,k∈Z$.…(10分)
∵$\frac{2}{3}+8k<\frac{5}{3}+4k$,∴$k<\frac{1}{4}$且k∈Z,…(11分)
又∵ω>0,∴k=0,
故ω的取值范圍是$({\frac{2}{3},\frac{5}{3}}]$.…(12分)
解法二:根據正弦函數的圖象與性質,得$\frac{T}{2}≥\frac{π}{2}-\frac{π}{4}$,
∴$T=\frac{2π}{ω}≥\frac{π}{2}$,∴0<ω≤4,
又y=lgf(x)在$x∈[\frac{π}{4},\frac{π}{2}]$內單增,且f(x)>0,
∴$\left\{{\begin{array}{l}{\frac{π}{4}ω-\frac{π}{3}>-\frac{π}{6}+2kπ}\\{\frac{π}{2}ω-\frac{π}{3}≤\frac{π}{2}+2kπ}\end{array}}\right.,k∈Z$;
解得:$\frac{2}{3}+8k<ω≤\frac{5}{3}+4k,k∈Z$;
可得k=0,所以ω的取值范圍是$({\frac{2}{3},\frac{5}{3}}]$.
點評 本題考查了三角函數的化簡與應用問題,也考查了復合函數的單調性問題,是綜合性題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向左移動$\frac{1}{2}$個單位 | B. | 向右移動$\frac{1}{2}$個單位 | ||
C. | 向左移動1個單位 | D. | 向右移動1個單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 直角三角形 | B. | 鈍角三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com