分析 (I)推導(dǎo)出PA⊥AB,AB⊥AD,從而AB⊥PD,由∠BMD=90°,得PD⊥BM,從而PD⊥平面ABM,由此能證明平面ABM⊥平面PCD.
(II)設(shè)h為D到面ACM的距離,由VM-ACD=VD-ACM,能求出D到面ACM的距離.
解答 (本小題12分)
證明:(I)∵PA⊥平面ABCD,AB?平面ABCD,
∴PA⊥AB,…(2分)
又∵AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,∴AB⊥PD,
∵以AC為直徑的球面交PD于M點(diǎn),底面ABCD為矩形,
∴由題意得∠BMD=90°,∴PD⊥BM,…(4分)
又∵AB∩BM=B,∴PD⊥平面ABM,
又PD?平面PCD,
∴平面ABM⊥平面PCD.…(6分)(每少一個(gè)條件扣1分)
解:(II)依題設(shè)知,AC是所作球面的直徑,
則AM⊥MC.
又∵PA⊥平面ABCD,則PA⊥CD,又CD⊥AD,
∴CD⊥平面PAD,則CD⊥AM,
∴AM⊥平面PCD,AM⊥PD,
又PA=AD,則M是PD的中點(diǎn),可得AM=2$\sqrt{2}$,MC=$\sqrt{M{D}^{2}+C{D}^{2}}$=2$\sqrt{3}$,
S△AMC=$\frac{1}{2}×AM×CM$=2$\sqrt{6}$,${S}_{△ADC}=\frac{1}{2}×AD×CD$=4,…(8分)
設(shè)h為D到面ACM的距離,
則由VM-ACD=VD-ACM,即$\frac{1}{3}×4×2=\frac{1}{3}×2\sqrt{6}×h$,…(10分)
得h=$\frac{4}{\sqrt{6}}=\frac{2\sqrt{6}}{3}$,
∴D到面ACM的距離為$\frac{{2\sqrt{6}}}{3}$.…(12分)
點(diǎn)評 本題考查面面垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x2≥1,則-1≥x≥1 | B. | 若1≥x≥-1,則x2≥1 | ||
C. | 若x≤-1或x≥1,則x2≥1 | D. | 若x2≥1,則x≤-1或x≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 90° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com