11.已知m,n∈R+,求證:$\frac{m+n}{2}$≥$\root{m+n}{{m}^{n}{n}^{m}}$.

分析 構(gòu)造函數(shù)y=lnx,運用二次求導(dǎo),判斷函數(shù)y=lnx在(0,+∞)上是遞增且上凸的函數(shù),即有$\frac{m}{m+n}$lnn+$\frac{n}{m+n}$lnm≤ln($\frac{m}{m+n}$•n+$\frac{n}{m+n}$•m),化簡整理,再由$\frac{m+n}{2}$與$\frac{2mn}{m+n}$作差比較,即可得證.

解答 證明:構(gòu)造函數(shù)y=lnx,
則y′=$\frac{1}{x}$,($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$<0,
即有函數(shù)y=lnx在(0,+∞)上是遞增且上凸的函數(shù),
由m,n>0,且$\frac{m}{m+n}$+$\frac{n}{m+n}$=1,
則$\frac{m}{m+n}$lnn+$\frac{n}{m+n}$lnm≤ln($\frac{m}{m+n}$•n+$\frac{n}{m+n}$•m)
=ln$\frac{2mn}{m+n}$,
而$\frac{m+n}{2}$-$\frac{2mn}{m+n}$=$\frac{(m+n)^{2}-4mn}{2(m+n)}$=$\frac{(m-n)^{2}}{2(m+n)}$≥0,
即有l(wèi)n$\frac{2mn}{m+n}$≤ln$\frac{m+n}{2}$,
則有$\frac{m}{m+n}$lnn+$\frac{n}{m+n}$lnm≤ln$\frac{m+n}{2}$,
即有$\frac{m+n}{2}$≥$\root{m+n}{{m}^{n}{n}^{m}}$成立.

點評 本題考查不等式的證明,主要考查構(gòu)造函數(shù)運用函數(shù)的單調(diào)性和凹凸性證明,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線ax+y+1=0經(jīng)過拋物線y2=4x的焦點,則直線與拋物線相交弦弦長為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線y=x(3lnx+1)在點(1,1)處的切線與直線x=0和y=x圍成的三角形的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線與向量$\overrightarrow{n}$=(2,-1)垂直,且與拋物線y2=4x交于A、B兩點,若AB的中點在雙曲線x2-y2=8,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n},n為偶數(shù)}\\{{a}_{n}+1,n為奇數(shù)}\end{array}\right.$,a1=1,若bn=a2n-1+2(bn≠0)
(1)求a4,并證明數(shù)列{bn}是等比數(shù)列;
(2)令cn=n•a2n-1,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{e^x}{x+a}$(e為自然對數(shù)的底),曲線y=f(x)在點(0,f(0))處的切線方程為y=$\frac{1}{4}$x+b.
(Ⅰ)求a、b的值,并求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)x≥0,求證:f(x)>$\sqrt{x+1}+\frac{{{x^2}-8}}{2x+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知兩條斜率為1的直線L1,L2分別過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,且L1與雙曲線交于A,B兩點,L2與雙曲線交于C,D兩點,若四邊形ABCD滿足AC⊥AB,則該雙曲線的離心率為$\frac{\sqrt{10}+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點為A,O為坐標(biāo)原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,則雙曲線C的離心率為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{39}}{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,P是圖象的最高點,Q為圖象與x軸的交點,O為坐標(biāo)原點,若OQ=4,OP=$\sqrt{5}$,PQ=$\sqrt{13}$.
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移2個單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,3]時,求函數(shù)h(x)=f(x)•g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案