已知某物體的運動曲線方程為:S=2t2-3t-1,則該物體在t=3時的速度為( 。
A、8B、9C、10D、11
考點:變化的快慢與變化率
專題:
分析:此類運動問題中瞬時速度問題的研究一般借助函數(shù)的導數(shù)求其某一時刻的瞬時速度,解答本題可以先求質(zhì)點的運動方程為s(t)=2t2-3t-1的導數(shù),再求得t=3秒時的導數(shù),即可得到所求的瞬時速度
解答: 解∵質(zhì)點的運動方程為s(t)=2t2-3t-1
∴s′(t)=4t-3
∴該質(zhì)點在t=3秒的瞬時速度為4×3-3=9米/秒.
故選B.
點評:本題考查變化的快慢與變化率,正確解答本題關(guān)鍵是理解導數(shù)的物理意義,即了解函數(shù)的導數(shù)與瞬時速度的關(guān)系,同時考查了運算求解的能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

△ABC中A,B,C的對邊分別是a,b,c,若
sinA
sinB
=
a
c
,(b+c+a)(b+c-a)=3bc,則△ABC的形狀為( 。
A、等邊三角形
B、等腰非等邊三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y=0對稱,則圓C2的方程為( 。
A、(x-1)2+(y+1)2=1
B、(x-1)2+(y-1)2=1
C、(x+1)2+(y+1)2=1
D、(x+1)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,AB=
3
,BC=1,sinC=
3
cosC,則△ABC的面積為(  )
A、
7
5
B、
11
4
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設z=1-i(i是虛數(shù)單位),則復數(shù)
3
z
+i2
的實部是( 。
A、
3
2
B、
3
2
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若P是拋物線x2=4y上的一個動點,則點P到直線l1:y=-1,l2:3x+4y+12=0的距離之和的最小值為( 。
A、3
B、4
C、
16
5
D、
19
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某市擬在長為8km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asin(ωx)(A>0,ω>0),x∈[0,4]的圖象,且圖象的最高點為S(3,2
3
),賽道的后一部分為折線段MNP,為保證參賽運動員的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P兩點間的距離;
(2)設∠PMN=θ,試用θ表示賽道MNP的長;            
(3)當θ為何值時,折線段賽道MNP最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點F(1,0),動點P(異于原點)在y軸上運動,連結(jié)PF,過點P作PM交x軸于點M,并延長MP與N,且
PM
PF
=0,|
PN
|=|
PM
|.
(1)求動點N的軌跡C的方程;
(2)若A(a,0),a∈R,求使|
AN
|最小的點N的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過x軸上動點A(a,0),引拋物線y=x2+1的兩條切線AP、AQ.切線斜率分別為k1和k2,切點分別為P、Q.
(1)求證:k1•k2為定值;并且直線PQ過定點;
(2)記S為面積,當
S△APQ
|
PQ
|
最小時,求
AP
AQ
的值.

查看答案和解析>>

同步練習冊答案