sin220°+cos250°+sin20°cos50°=
 
考點:二倍角的余弦,二倍角的正弦
專題:三角函數(shù)的求值
分析:先根據(jù)二倍角公式降冪,再由積化和差公式、和和差化積化簡即可得到答案.
解答: 解:sin220°+cos250°+sin20°cos50°=
1
2
(1-cos40°)+
1
2
(1+cos100°)+sin20°cos50°
=1+
1
2
(cos100°-cos40°)+
1
2
(sin70°-sin30°)=
3
4
+
1
2
×(-2)sin70°sin30°+
1
2
sin70°
=
3
4

故答案為:
3
4
點評:本題主要考查二倍角公式、積化和差公式、和和差化積公式的應用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

動圓E過點F(1,0),且與直線x=-1相切,圓心E的軌跡是曲線C.
(1)求曲線C的方程;
(2)過點Q(4,2)的任意一條不過點P(4,4)的直線與曲線C交于A,B兩點,直線AB與直線y=x+4交于點M,記直線PA,PB,PM的斜率分別為k1,k2,k3,問是否存在實數(shù)λ,使得k1+k2=λk3恒成立?若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)U={2,4,3-a2},P={2,a2+2-a},∁UP={-1},求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定積分
1
-1
(x+sinx)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:通過以“直”代“曲”無限逼近的方法求曲邊梯形的面積的步驟是
 
、近似代替、
 
、取極限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
-1
[
1-x2
-sinx]dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)關(guān)于x,y的不等式組
x-2y+1≥0
x≤a
y+a≥0
表示的平面區(qū)域為D.若在平面區(qū)域D內(nèi)存在點P(x0,y0),滿足3x0-4y0=5,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a+c=4
3
,則△ABC面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx,若直線l過點(0,-1),并且與曲線y=f(x)相切,則直線l的方程為( 。
A、x+y-1=0
B、x-y-1=0
C、x+y+1=0
D、x-y+1=0

查看答案和解析>>

同步練習冊答案