【題目】若直線y=x+b與曲線 有公共點,則b的取值范圍是(
A.[ , ]
B.[ ,3]
C.[﹣1, ]
D.[ ,3]

【答案】D
【解析】解:曲線方程可化簡為(x﹣2)2+(y﹣3)2=4(1≤y≤3),
即表示圓心為(2,3)半徑為2的半圓,如圖
依據(jù)數(shù)形結(jié)合,當(dāng)直線y=x+b與此半圓相切時須滿足圓心(2,3)到直線y=x+b距離等于2,即 解得 ,
因為是下半圓故可知 (舍),故
當(dāng)直線過(0,3)時,解得b=3,
,
故選D.

本題要借助圖形來求參數(shù)b的取值范圍,曲線方程可化簡為(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圓心為(2,3)半徑為2的半圓,畫出圖形即可得出參數(shù)b的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是(
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點距地面2米,最高點距地面18米,P是摩天輪輪周上一定點,從P在最低點時開始計時,則14分鐘后P點距地面的高度是米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1,點M與曲線C的焦點不重合,若點M關(guān)于曲線C的兩個焦點的對稱點分別為A,B,M,N是坐標(biāo)平面內(nèi)的兩點,且線段MN的中點P恰好在雙曲線C上,則|AN﹣BN|=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點M(1,1),且與x軸,y軸的正半軸分別相交于A,B兩點,O為坐標(biāo)原點.求:
(1)當(dāng)|OA|十|OB|取得最小值時,直線l的方程;
(2)當(dāng)|MA|2+|MB|2取得最小值時,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ , ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)f(x)與g(x)的圖象相同的是(
A.f(x)=x,g(x)=( 2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值10,則f(2)等于(
A.11或18
B.11
C.18
D.17或18

查看答案和解析>>

同步練習(xí)冊答案