分析 (Ⅰ)根據(jù)三角函數(shù)的圖象變換關(guān)系進(jìn)行求解即可.
(Ⅱ)根據(jù)三角函數(shù)的單調(diào)性的性質(zhì)求出單調(diào)遞增區(qū)間即可.
解答 解:(1)將函數(shù)y=sinx圖象上的所有點(diǎn)向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,則C1:$y=sin(x-\frac{π}{6})$…(2分)
再把曲線C1上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象,即 $f(x)=sin(2x-\frac{π}{6})$…(4分)
則函數(shù)的周期T=$\frac{2π}{2}$=π…(6分)
(2)∵g(x)=f(x)+cos2x,
∴$g(x)=sin(2x-\frac{π}{6})+cos2x$…(7分),
則$g(x)=sin(2x+\frac{π}{6})$…(9分)
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
則kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
∵0≤x≤π,
∴當(dāng)k=0時(shí),0≤x≤$\frac{π}{6}$,
當(dāng)k=1時(shí),$\frac{2π}{3}$≤x≤π,
即g(x)在[0,π]上的單調(diào)遞增區(qū)間是[0,$\frac{π}{6}$]和[$\frac{2π}{3}$,π]…(12分)
點(diǎn)評(píng) 本題主要考查三角函數(shù)圖象之間的關(guān)系以及三角函數(shù)的圖象和性質(zhì),難度不大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | d>$\frac{12}{19}$ | B. | d<$\frac{2}{3}$ | C. | $\frac{12}{19}$≤d<$\frac{2}{3}$ | D. | $\frac{12}{19}$<d≤$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
空氣質(zhì)量指數(shù)類別 | 頻數(shù) | 頻率 |
優(yōu)[0,35] | ||
良(35,75] | ||
輕度污染(75,115] | ||
中度污染(115,150] | ||
重度污染(150,250] | ||
嚴(yán)重污染(250,500] | ||
合計(jì) | 30 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=cos(\frac{π}{6}-2x)$ | B. | $y=cos(2x-\frac{π}{3})$ | C. | $y=sin(x+\frac{π}{6})$ | D. | $y=sin(2x-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,3] | B. | [0,6] | C. | [0,5] | D. | [0,12] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com