已知A、B、C是直線l上不同的三個點,點O不在直線l上,則使等式x2
OA
+x
OB
+
BC
=
0
成立的實數(shù)x的取值集合為( 。
A、{-1}B、∅
C、{0}D、{0,-1}
考點:平面向量的基本定理及其意義
專題:平面向量及應用
分析:利用向量的運算法則將等式中的向量都用以o為起點的向量表示,利用三點共線的條件列出方程求出x.
解答: 解:x2
OA
+x
OB
+
BC
=
0
,
x2
OA
+x
OB
+
OC
-
OB
=
0

OC
=-x2
OA
+(1-x)
OB

∵A,B,C共線,
∴-x2+1-x=1,
解得x=0,-1
當x=0時,x2
OA
+x
OB
+
BC
=
BC
=
0
,此時B,C兩點重合,不合題意
故選A.
點評:本題考查向量的運算法則、三點共線的充要條件:A,B,C共線?
OC
=x
OA
+y
OB
,其中x+y=1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,若存在常數(shù)m>0,對任意x∈R,有|f(x)|≤m|x|,則稱f(x)為F函數(shù).給出下列函數(shù):①f(x)=0; ②f(x)=x2; ③f(x)=sinx+cosx;④f(x)=
x
x2+x+1
; ⑤f(x)是定義在R上的奇函數(shù),且滿足對一切實數(shù)x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函數(shù)的序號是( 。
A、①②④B、①②⑤
C、①③④D、①④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線x2-y2=1的右焦點且與右支有兩個交點的直線,其傾斜角范圍是( 。
A、[0,π)
B、(
π
4
4
C、(
π
4
π
2
)∪(
π
2
,
4
D、(0,
π
2
)∪(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD的中點,則AE與平面ABD所成角的正弦值為( 。
A、
1
2
B、
6
3
C、
6
6
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)||z+i|-|z-i||=2對應復平面內(nèi)的曲線是(  )
A、雙曲線B、雙曲線的一支
C、線段D、兩條射線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實數(shù)m的取值范圍為(  )
A、[0,+∞)
B、(0,+∞)
C、[-3,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x∈N|0<x≤8},集合A={1,2,4,5},B={3,5,7,8},則圖中陰影部分所表示的集合是( 。
A、{1,2,4}
B、{3,7,8}
C、{1,2,4,6}
D、{3,6,7,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域和值域都是[-1,1](其圖象如圖所示),函數(shù)g(x)=sinx,x∈[-π,π].定義:當f(x1)=0(x1∈[-1,1])且g(x2)=x1(x2∈[-π,π])時,稱x2是方程f(g(x))=0的一個實數(shù)根.則方程f(g(x))=0的所有不同實數(shù)根的個數(shù)是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+S2=12,q=
S2
b2

(Ⅰ)求an與bn
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=
1
Sn
,求{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案