10.設(shè)集合A={x|y=$\sqrt{2x{-x}^{2}}$.x∈N},B={x|y=ln(2-x)},則A∩B表示的集合為( 。
A.{1}B.{x|0≤x<2}C.{0,1}D.{0,1,2}

分析 化簡(jiǎn)集合A、B,求出A∩B即可.

解答 解:集合A={x|y=$\sqrt{2x{-x}^{2}}$,x∈N}={x|2x-x2≥0}={x|0≤x≤2,x∈N}={0,1,2};
B={x|y=ln(2-x)}={x|2-x>0}={x|x<2}=(-∞,2);
∴A∩B={0,1}.
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,用3種不同的顏色涂入圖中6個(gè)小正方形,要求每個(gè)小正方形只涂一種顏色,且有公共邊的兩個(gè)正方形顏色不同,則共有種不同涂法(用數(shù)字作答).
   
   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=$\frac{\sqrt{{x}^{2}+2x-15}}{lg(x+7)}$的定義域?yàn)椋?7,-6)∪(-6,-5]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知sinα+sinβ=$\frac{\sqrt{2}}{2}$,求cosα+cosβ的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.求曲線y=sinx,直線x=0,x=$\frac{π}{2}$以及x軸所圍成平面圖形的面積1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若a>0,b>0,且a+b=1,則$\frac{2}{a}$+$\frac{2}$的最小值為(  )
A.$\frac{1}{2}$B.2C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果點(diǎn)P(x,y)在圓(x-3)2+(y+4)2=25上,則x-y的最大值是( 。
A.10B.12C.5+3$\sqrt{2}$D.7+5$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為棱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)設(shè)點(diǎn)M是線段PC上的一點(diǎn),PM=t PC,且PA∥平面MQB.
(。┣髮(shí)數(shù)t的值;
(ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知二次函數(shù)f(x)=ax2+bx(|b|≤2|a|),定義f1(x)=max{f(t)|-1≤t≤x≤1},f2(x)=min{f(t)|-1≤t≤x≤1},其中max{a,b}表示a,b中的較大者,min{a,b}表示a,b中的較小者,則下列命題正確的是( 。
A.若f1(-1)=f1(1),則f(-1)>f(1)B.若f2(-1)=f2(1),則f(-1)>f(1)
C.若f(-1)=f(1),則f2(-1)>f2(1)D.若f2(1)=f1(-1),則f1(-1)<f1(1)

查看答案和解析>>

同步練習(xí)冊(cè)答案