2.如果點(diǎn)P(x,y)在圓(x-3)2+(y+4)2=25上,則x-y的最大值是( 。
A.10B.12C.5+3$\sqrt{2}$D.7+5$\sqrt{2}$

分析 根據(jù)題意,設(shè)x-3=5cosα,y+4=5sinα,求出x、y的解析式,再利用三角函數(shù)求出x-y的最大值.

解答 解:∵圓的標(biāo)準(zhǔn)方程為(x-3)2+(y+4)2=25,
∴令x-3=5cosα,y+4=5sinα,
x=3+5cosα,y=-4+5sinα,
∴x-y=(3+5cosα)-(-4+5sinα)
=5cosα-5sinα+7
=5$\sqrt{2}$cos(α+$\frac{π}{4}$)+7,
∴x-y的最大值為7+5$\sqrt{2}$.
故選:D.

點(diǎn)評 本題考查了利用參數(shù)法求最值的應(yīng)用問題,解題的關(guān)鍵是設(shè)出參數(shù),利用參數(shù)表示出目標(biāo)函數(shù),是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若Sn-1是an與Sn的等比中項(xiàng),則a2015+$\frac{1}{2016}$的值為$\frac{1}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則$\overrightarrow{a}$$•\overrightarrow$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={x|y=$\sqrt{2x{-x}^{2}}$.x∈N},B={x|y=ln(2-x)},則A∩B表示的集合為( 。
A.{1}B.{x|0≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a1=2且a1,a3,2a2+6成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足4${\;}^{_{1}-1}$4${\;}^{_{2}-1}$…4${\;}^{_{n}-1}$=(an)${\;}^{_{n}}$(n∈N),證明:數(shù)列{bn}是等差數(shù)列;
(Ⅲ)證明:$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$$<\frac{n}{2}$(n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知p:|x-a|≤4,q:$\frac{1}{5x-{x}^{2}-6}$≥0,q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+C${\;}_{5}^{2}$+…+C${\;}_{99}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={1,2,3,4},集合B={x|x∈A,且2x∉A},則A∩B=( 。
A.{1,2}B.{1,3}C.{2,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F(-c,0),離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M在橢圓上且位于第一象限,直線FM被圓x2+y2=$\frac{b^2}{4}$截得的線段的長為c,|FM|=$\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求直線FM的斜率;
(Ⅱ)求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案