A. | (-1,5) | B. | (-∞,3) | C. | (3,+∞) | D. | (3,5) |
分析 利用待定系數(shù)法求出y=f(x)的解析式,再利用函數(shù)的單調(diào)性把不等式f(a+1)<f(10-2a)化為等價的不等式組$\left\{\begin{array}{l}{a+1>10-2a}\\{10-2a>0}\end{array}\right.$,求出解集即可.
解答 解:冪函數(shù)y=f(x)=xα的圖象經(jīng)過點$(4,\frac{1}{2})$,
∴4α=$\frac{1}{2}$,解得α=-$\frac{1}{4}$;
∴f(x)=${x}^{-\frac{1}{4}}$,x>0;
又f(a+1)<f(10-2a),
∴$\left\{\begin{array}{l}{a+1>10-2a}\\{10-2a>0}\end{array}\right.$,
解得3<a<5,
∴實數(shù)a的取值范圍是(3,5).
故選:D.
點評 本題考查了用待定系數(shù)法求函數(shù)解析式以及利用函數(shù)的單調(diào)性求不等式的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 都表示一條直線和一個圓 | |
B. | 都表示兩個點 | |
C. | 前者是兩個點,后者是一直線和一個圓 | |
D. | 前者是一條直線和一個圓,后者是兩個點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 6 | C. | $6\sqrt{2}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com