【題目】設(shè)函數(shù),為f(x)的導(dǎo)函數(shù).
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和的零點均在集合中,求f(x)的極小值;
(3)若,且f(x)的極大值為M,求證:M≤.
【答案】(1);
(2)見解析;
(3)見解析.
【解析】
(1)由題意得到關(guān)于a的方程,解方程即可確定a的值;
(2)由題意首先確定a,b,c的值從而確定函數(shù)的解析式,然后求解其導(dǎo)函數(shù),由導(dǎo)函數(shù)即可確定函數(shù)的極小值.
(3)由題意首先確定函數(shù)的極大值M的表達式,然后可用如下方法證明題中的不等式:
解法一:由函數(shù)的解析式結(jié)合不等式的性質(zhì)進行放縮即可證得題中的不等式;
解法二:由題意構(gòu)造函數(shù),求得函數(shù)在定義域內(nèi)的最大值,
因為,所以.
當(dāng)時,.
令,則.
令,得.列表如下:
+ | 0 | – | |
極大值 |
所以當(dāng)時,取得極大值,且是最大值,故.
所以當(dāng)時,,因此.
(1)因為,所以.
因為,所以,解得.
(2)因為,
所以,
從而.令,得或.
因為,都在集合中,且,
所以.
此時,.
令,得或.列表如下:
1 | |||||
+ | 0 | – | 0 | + | |
極大值 | 極小值 |
所以的極小值為.
(3)因為,所以,
.
因為,所以,
則有2個不同的零點,設(shè)為.
由,得.
列表如下:
| |||||
+ | 0 | – | 0 | + | |
極大值 | 極小值 |
所以的極大值.
解法一:
.因此.
解法二:
因為,所以.
當(dāng)時,.
令,則.
令,得.列表如下:
+ | 0 | – | |
極大值 |
所以當(dāng)時,取得極大值,且是最大值,故.
所以當(dāng)時,,因此.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時,討論在區(qū)間上零點個數(shù);
(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是函數(shù)定義域內(nèi)的一個子集,若存在,使得成立,則稱是的一個“不動點”,也稱在區(qū)間上存在不動點.
設(shè)函數(shù),.
(1)若,求函數(shù)的不動點;
(2)若函數(shù)在上不存在不動點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈[0,1]時,下列關(guān)于函數(shù)y=的圖象與的圖象交點個數(shù)說法正確的是( )
A. 當(dāng)時,有兩個交點B. 當(dāng)時,沒有交點
C. 當(dāng)時,有且只有一個交點D. 當(dāng)時,有兩個交點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓:()的離心率為,右準(zhǔn)線方程是直線l:,點P為直線l上的一個動點,過點P作橢圓的兩條切線,切點分別為AB(點A在x軸上方,點B在x軸下方).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)①求證:分別以為直徑的兩圓都恒過定點C;
②若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,平面,,,.
(1)在棱上是否存在一點,使得平面?請證明你的結(jié)論;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com