12.已知函數(shù)f(x)=(m-1)x2+mx+m-1.
(1)若f(x)為奇函數(shù),求m的值;
(2)若f(x)為偶函數(shù),求m的值.

分析 (1)可以看出f(x)定義域?yàn)镽,f(x)為奇函數(shù),從而f(0)=0,這樣便可得出m值;
(2)f(x)為偶函數(shù),從而有f(-1)=f(1),這樣便可建立關(guān)于m的方程,從而可解出m.

解答 解:(1)f(x)為奇函數(shù);
∴f(0)=m-1=0;
∴m=1;
(2)f(x)為偶函數(shù);
∴f(-1)=f(1);
即(m-1)-m+m-1=(m-1)+m+m-1;
∴m=0.

點(diǎn)評(píng) 考查奇函數(shù)、偶函數(shù)的定義,奇函數(shù)f(x)在原點(diǎn)有定義時(shí),f(0)=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若關(guān)于x的不等式x2+ax+1>2x+a對(duì)a2-$\frac{17}{4}$a+1<0的一切a恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率是$\frac{\sqrt{2}}{2}$,橢圓和曲線E:x2=2py(p>0)相交于A、B兩點(diǎn),且M(-$\sqrt{2}$+1,2$\sqrt{2}$),B兩點(diǎn)關(guān)于直線y=x+$\sqrt{2}$對(duì)稱.
(1)寫出點(diǎn)A,B的坐標(biāo)并求出橢圓和曲線E的方程;
(2)設(shè)經(jīng)過橢圓右焦點(diǎn)F的直線l交橢圓于C、D兩點(diǎn),判斷點(diǎn)P(2$\sqrt{2}$,0)與以線段CD為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知m∈{x|ex-1+x-2=0},n∈{x|x2-ax-a+3=0},且存在m,n使|m-n|≤1,則實(shí)數(shù)a的取值范圍為[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在棱長為1的正方體內(nèi)有兩個(gè)球相外切且又分別與正方體內(nèi)切,求兩球半徑之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=a2x2+ax在區(qū)間(0,1)上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足$\frac{a}{sinA}$=$\frac{\sqrt{3}c}{cosC}$.
(1)求角C的大小;
(2)若B+C=$\frac{5π}{12}$,b=$\sqrt{2}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的定義域:
(1)y=$\sqrt{lo{g}_{2}(4x-3)}$;
(2)y=log5-x(2x-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,已知$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{BC}$=(-1,3,0),則∠ABC=$\frac{3π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案