10.雙曲線兩條漸近線的夾角為60°,該雙曲線的離心率為(  )
A.$\frac{2}{3}\sqrt{3}$或2B.$\frac{2}{3}\sqrt{3}$或$\sqrt{2}$C.$\sqrt{3}$或2D.$\sqrt{3}$或$\sqrt{2}$

分析 由題意得,$\frac{a}=\sqrt{3}$或$\frac{\sqrt{3}}{3}$ 分類討論利用雙曲線的性質(zhì)即可得出.

解答 解:∵雙曲線兩條漸近線的夾角為60°,
∴$\frac{a}=\sqrt{3}$或$\frac{\sqrt{3}}{3}$.
當(dāng)$\frac{a}=\sqrt{3}$時(shí),$\frac{^{2}}{{a}^{2}}=3$,∴b2=3a2,又c2=a2+b2,∴c2=4a2,即$\frac{c}{a}=2$.
同理可得當(dāng)$\frac{a}=\frac{\sqrt{3}}{3}$時(shí),$\frac{c}{a}=\frac{2\sqrt{3}}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知a>0,b>0,且a2+b2=2,則a+b的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知三棱錐P-ABC的所有棱長(zhǎng)都相等,現(xiàn)沿PA,PB,PC三條側(cè)棱剪開(kāi),將其表面展開(kāi)成一個(gè)平面圖形,若這個(gè)平面圖形外接圓的半徑為2$\sqrt{6}$,則三棱錐P-ABC的內(nèi)切球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1+i}{1-i}$=( 。
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.將6名教師全部安排去開(kāi)發(fā)A、B、C、D四門課程,要求每門課程至少有一名教師開(kāi)發(fā),每名教師只開(kāi)發(fā)一門課程,且這6名中甲、乙兩人不開(kāi)發(fā)A課程,則不同的安排方案共有240種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.610°是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知等差數(shù)列{an}中,d=2,a1=3,an=9,求n及S10
(2)已知等比數(shù)列{an}中,S3=3a1,a2=4,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義運(yùn)算$|\begin{array}{l}{a}&\\{c}&qikokis\end{array}|$=ad-bc,若函數(shù)f(x)=$|\begin{array}{l}{x-1}&{2}\\{-x}&{x+3}\end{array}|$在(-∞,m)上單調(diào)遞減,則實(shí)數(shù)m的取值范圍( 。
A.(-2,+∞)B.[-2,+∞)C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,如果a、b、c成等差數(shù)列,∠B=30°,△ABC的面積為2-$\sqrt{3}$,那么b=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案