Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
14.若直線l:y=kx+1被圓C:x2+y2-2x-3=0截得的弦最短,則直線l的方程是x-y+1=0.

分析 直線過定點(diǎn)(0,1),截得的弦最短,圓心和弦垂直,求得斜率可解得直線方程.

解答 解:直線l是直線系,它過定點(diǎn)(0,1),要使直線l:y=kx+1被圓C:x2+y2-2x-3=0截得的弦最短,
必須圓心(1,0)和定點(diǎn)(0,1)的連線與弦所在直線垂直;
連線的斜率-1,弦所在直線斜率是1.
則直線l的方程是:y-1=x,
故答案為:x-y+1=0.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,圓的一般方程求圓心,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.證明函數(shù)f(x)=x8-x5+x2-x+1的值恒為正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=|tanx|的周期和對稱軸分別為(  )
A.π,x=kπ2(k∈Z)B.π2,x=kπ(k∈Z)C.π,x=kπ(k∈Z)D.π2,x=kπ2(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線{x=2+ty=3t(t為參數(shù))被曲線x2-y2=1截得的弦長為( �。�
A.210B.27C.10D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,3),若P(ξ<a-5)=P(ξ>a+1),則實(shí)數(shù)a等于( �。�
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖的算法語句輸出結(jié)果是2,則輸入的x值是( �。�
A.0B.2C.-1或2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線W:x24+y23=1(y≥0),直線l:y=kx+1與曲線W交于A,D兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C.
(1)當(dāng)點(diǎn)B坐標(biāo)為(-1,0)時(shí),求k的值;
(2)記△OAD的面積為S1,四邊形ABCD的面積為S2
(i)若S1=263,求線段AD的長度;
(ii)求證:S1S212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若lgx有意義,則函數(shù)y=x2+3x-5的值域是( �。�
A.[-294,+∞)B.(-294,+∞)C.[-5,+∞)D.(-5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2ωx-2sin2ωx+1(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案