【題目】設(shè)等差數(shù)列{an}滿足3a8=5a15 , 且 ,Sn為其前n項(xiàng)和,則數(shù)列{Sn}的最大項(xiàng)為( )
A.
B.S24
C.S25
D.S26
【答案】C
【解析】解:設(shè)等差數(shù)列{an}的公差為d,∵3a8=5a15,∴3(a1+7d)=5(a1+14d),化為2a1+49d=0,
∵ ,∴d<0,∴等差數(shù)列{an}單調(diào)遞減,
Sn=na1+ d= + d= (n﹣25)2﹣ d.
∴當(dāng)n=25時(shí),數(shù)列{Sn}取得最大值,
故選:C.
設(shè)等差數(shù)列{an}的公差為d,由3a8=5a15,利用通項(xiàng)公式化為2a1+49d=0,由 ,可得d<0,Sn=na1+ d= (n﹣25)2﹣ d.利用二次函數(shù)的單調(diào)性即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,D1D=3,點(diǎn)M是B1C1的中點(diǎn),點(diǎn)N是AB的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.
(1)寫出點(diǎn)D、N、M的坐標(biāo);
(2)求線段MD、MN的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ <1“是“a>1“的必要不充分條件
C.命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3>0”
D.“若am2<bm2 , 則a<b”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=
∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請(qǐng)證明你的結(jié)論.
(2)求平面EBD與平面ABC所成的銳二面角θ的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△AOB中,AO=1,BO=2,如圖,動(dòng)點(diǎn)P是在以O(shè)點(diǎn)為圓心,OB為半徑的扇形內(nèi)運(yùn)動(dòng)(含邊界)且∠BOC=90°;設(shè) ,則x+y的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P-ABCD的底面ABCD是正方形,E,F分別為AC和PB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.
(1)求EF與平面ABCD所成角的大小;
(2)求二面角B-PA-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=4,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:平面;
(2)過點(diǎn)E作截面 平面,分別交CB于F,于H,求截面的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,點(diǎn)E是PD的中點(diǎn).
(1)求證:AC⊥PB;
(2)當(dāng)二面角E﹣AC﹣D的大小為45°時(shí),求AP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com