分析 (1)由題中圖所示,求出這段時(shí)間的最大溫差.
(2)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,可得函數(shù)的解析式.
(3)由函數(shù)的圖象可得函數(shù)的對(duì)稱中心.
解答 解:(1)由題中圖所示,這段時(shí)間的最大溫差是:30-10=20(℃).
(2)圖中從6時(shí)到14時(shí)的圖象是函數(shù)y=Asin(ωx+ϕ)+b的半個(gè)周期的圖象,
∴$\frac{1}{2}$•$\frac{2π}{ω}$=14-6,解得ω=$\frac{π}{8}$.
由圖示,A=$\frac{1}{2}$(30-10)=10,b=$\frac{1}{2}$(30+10)=20.
這時(shí)y=10sin($\frac{π}{8}$x+ϕ)+20.
將x=6,y=10代入上式,可取ϕ=$\frac{3π}{4}$.
綜上,所求的解析式為y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].
(3)由圖可得函數(shù)的對(duì)稱中心為(10,20).
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-x2+5(x∈R) | B. | y=kx.(x∈R,k∈R,k≠0) | ||
C. | y=x3(x∈R) | D. | $y=-\frac{1}{x}(x∈R,x≠0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 0 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{2-\sqrt{2}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com