分析 畫出分段函數(shù)的圖象,利用a的范圍,判斷兩個(gè)函數(shù)的圖形的交點(diǎn)個(gè)數(shù),即可得到方程根的個(gè)數(shù).
解答 解:如圖所示,作出函數(shù)f(x)的函數(shù)圖象,從而可知,當(dāng)1<a<2時(shí),函數(shù)f(x)有三個(gè)零點(diǎn):x3<-4,x1>x2>1,而$x+\frac{1}{x}-2∈(-∞,-4]∪[0.+∞)$,故可知,方程$f(x+\frac{1}{x}-2)=a$有6個(gè)零點(diǎn)
故答案為:6.
點(diǎn)評 本題考查函數(shù)的零點(diǎn)個(gè)數(shù)的求法,考查數(shù)形結(jié)合以及函數(shù)的圖象的判斷與應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∨q為真命題,則p∧q為真命題. | |
B. | “x=5”是“x2-4x-5=0”的必要不充分條件. | |
C. | 命題“?x∈R,x2+x-1<0”的否定為:“?x∈R,x2+x-1≥0”. | |
D. | 命題“已知A,B為一個(gè)三角形兩內(nèi)角,若A=B,則sinA=sinB”的否命題為真命題. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$,$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$ | |
B. | |$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$| | |
C. | |$\overrightarrow{a}$•$\overrightarrow$|≥|$\overrightarrow{a}$||$\overrightarrow$| | |
D. | |$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{6}+\frac{y^2}{3}=1$ | C. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$+y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若ac>bc,則a>b | B. | 若a<b,則ac2<bc2 | ||
C. | 若$\frac{1}{a}$<$\frac{1}$<0,則a>b | D. | 若a>b,c>d,則a-c>b-d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com