3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為橢圓的左.右焦點(diǎn),M是橢圓上任一點(diǎn),若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$的取值范圍為[-3,3],則橢圓方程為( 。
A.$\frac{x^2}{9}+\frac{y^2}{3}=1$B.$\frac{x^2}{6}+\frac{y^2}{3}=1$C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+y2=1

分析 設(shè)M(m,n),F(xiàn)1(-c,0),F(xiàn)2(c,0),運(yùn)用向量的數(shù)量積的坐標(biāo)表示,結(jié)合橢圓上的點(diǎn)和原點(diǎn)的距離的最值,即可得到a,b的值,進(jìn)而得到所求方程.

解答 解:設(shè)M(m,n),F(xiàn)1(-c,0),F(xiàn)2(c,0),
$\overrightarrow{M{F}_{1}}$=(-c-m,-n),$\overrightarrow{M{F}_{2}}$=(c-m,-n),
$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-c-m)(c-m)+n2=m2+n2-c2
由m2+n2的幾何意義為點(diǎn)(0,0)與點(diǎn)M的距離的平方,
即有m2+n2的最大值為a2,最小值為b2
則$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$的取值范圍是[b2-c2,a2-c2],
由題意可得b2-c2=-3,a2-c2=3,b2+c2=a2,
求得b2=3,a2=9,c2=6,
可得橢圓的方程為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$
故選A.

點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),考查平面向量的數(shù)量積的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,則$f(f(\frac{7π}{6}))$=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.f(x)是偶函數(shù),且在(-∞,0)上是增函數(shù),則下列關(guān)系成立的是(  )
A.f(-2)<f(1)<f(3)B.f(1)<f(-2)<f(3)C.f(3)<f(-2)<f(1)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}({1-x}),(x<1)\\-{(x-2)^2}+2,(x≥1)\end{array}\right.$,則關(guān)于x的方程$f(x+\frac{1}{x}-2)=a$,當(dāng)1<a<2的實(shí)根個(gè)數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二項(xiàng)式${({x+\frac{1}{x}})^n}$的展開(kāi)式中各項(xiàng)的系數(shù)和為256.
(Ⅰ)求n;
(Ⅱ)求展開(kāi)式中的常數(shù)項(xiàng).(結(jié)果用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知□ABCD的三個(gè)頂點(diǎn)A(-1,-2),B(3,1),C(0,2),則頂點(diǎn)D的坐標(biāo)為( 。
A.(2,-3)B.(-1,0)C.(4,5)D.(-4,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.拋物線y=ax2(a≠0)的焦點(diǎn)坐標(biāo)為( 。
A.(0,$\frac{a}{4}$)或(0,-$\frac{a}{4}$)B.(0,$\frac{1}{4a}$)或(0,-$\frac{1}{4a}$)C.$(0,\frac{1}{4a})$D.$(\frac{1}{4a},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=xlnx,g(x)=k(x-1)
(1)當(dāng)k=e 時(shí),求函數(shù)$h(x)=\frac{f(x)-g(x)}{x}$ 的極值;
(2)當(dāng)k>0 時(shí),若對(duì)任意兩個(gè)不等的實(shí)數(shù)x1,x2∈[1,2],均有$|{\frac{{f({x_1})}}{x_1}-\frac{{f({x_2})}}{x_2}}|>|{\frac{{g({x_1})}}{x_1}-\frac{{g({x_2})}}{x_2}}|$,求實(shí)數(shù)k 的取值范圍;
(3)是否存在實(shí)數(shù)k,使得函數(shù)$h(x)=\frac{f(x)-g(x)}{x}$ 在[1,e]上的最小值為$\frac{1}{2}$,若存在求出k 的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在平面直角坐標(biāo)中,有不共線的三點(diǎn)A,B,C,已知AB,AC所在直線的斜率分別為k1,k2,則“k1k2>-1”是“∠BAC為銳角”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案