19.函數(shù)y=x2-sinx在x=0處的切線方程為y=-x.

分析 求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的 幾何意義即可得到結(jié)論.

解答 解:∵y=x2-sinx,
∴f′(x)=2x-cosx,
則f′(0)=-1,
當(dāng)x=0時(shí),y=0,即切點(diǎn)坐標(biāo)為(0,0),
則函數(shù)y=x2-sinx在x=0處的切線方程為y=-x,
故答案為:y=-x.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義,求出函數(shù)的導(dǎo)數(shù),根據(jù)切線斜率和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)滿足:對(duì)?x∈R+都有f′(x)=$\frac{3}{x}$f(x),且f(22016)≠0,則$\frac{f({2}^{2017})}{f({2}^{2016})}$的值為(  )
A.0.125B.0.8C.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.長(zhǎng)方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E為AB的中點(diǎn),CE=3,cos∠ACE=$\frac{5\sqrt{3}}{9}$,且四邊形ABB1A1為正方形,則球O的直經(jīng)為( 。
A.4B.6C.4或$\sqrt{51}$D.6或$\sqrt{53}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)$\overrightarrow a=(-3,m),\overrightarrow b=(4,3)$,若$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角,則實(shí)數(shù)m的范圍是( 。
A.m>4B.m<4C.m<4且$m≠\frac{9}{4}$D.m<4且$m≠-\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.f(x)是偶函數(shù),且在(-∞,0)上是增函數(shù),則下列關(guān)系成立的是(  )
A.f(-2)<f(1)<f(3)B.f(1)<f(-2)<f(3)C.f(3)<f(-2)<f(1)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對(duì)應(yīng)值表:
x1234567
f(x)123.521.5-7.8211.57-53.7-126.7-129.6
那么函數(shù)f(x)在區(qū)間[1,6]上的零點(diǎn)至少有( 。
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}({1-x}),(x<1)\\-{(x-2)^2}+2,(x≥1)\end{array}\right.$,則關(guān)于x的方程$f(x+\frac{1}{x}-2)=a$,當(dāng)1<a<2的實(shí)根個(gè)數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知□ABCD的三個(gè)頂點(diǎn)A(-1,-2),B(3,1),C(0,2),則頂點(diǎn)D的坐標(biāo)為( 。
A.(2,-3)B.(-1,0)C.(4,5)D.(-4,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,M,N分別是AB,BC的中點(diǎn). 
(1)求證:平面B1MN⊥平面BB1D1D;
(2)在棱DD1上是否存在一點(diǎn)P,使得BD1∥平面PMN,若存在,求D1P:PD的比值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案