設(shè)函數(shù),其中a>0,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=1.
(Ⅰ)確定b,c的值;
(Ⅱ)設(shè)曲線y=f(x)在點(diǎn)(x1,f(x1))及(x2,f(x2))處的切線都過點(diǎn)(0,2).證明:當(dāng)x1≠x2時(shí),f′(x1)≠f′(x2);
(Ⅲ)若過點(diǎn)(0,2)可作曲線y=f(x)的三條不同切線,求a的取值范圍.
【答案】分析:(Ⅰ)由得:f(0)=c,f'(x)=x2-ax+b,f'(0)=b.由此能求出b和c.
(Ⅱ),由于點(diǎn)(t,f(t))處的切線方程為y-f(t)=f'(t)(x-t),而點(diǎn)(0,2)在切線上,所以2-f(t)=f'(t)(-t),由此利用反證法能夠證明f'(x1)≠f'(x2).
(Ⅲ)過點(diǎn)(0,2)可作y=f(x)的三條切線,等價(jià)于方程2-f(t)=f'(t)(0-t)有三個(gè)相異的實(shí)根,即等價(jià)于方程有三個(gè)相異的實(shí)根.由此能求出a的取值范圍.
解答:解:(Ⅰ)由,
得:f(0)=c,f'(x)=x2-ax+b,f'(0)=b.
又由曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=1,
得f(0)=1,f'(0)=0.
故b=0,c=1.
(Ⅱ),
由于點(diǎn)(t,f(t))處的切線方程為y-f(t)=f'(t)(x-t),
而點(diǎn)(0,2)在切線上,
所以2-f(t)=f'(t)(-t),
化簡(jiǎn)得
即t滿足的方程為
下面用反證法證明.
假設(shè)f'(x1)=f'(x2),
由于曲線y=f(x)在點(diǎn)(x1,f(x1))及(x2,f(x2))處的切線都過點(diǎn)(0,2),
則下列等式成立:
由(3)得x1+x2=a,
由(1)-(2)得
,
故由(4)得,
此時(shí)與x1≠x2矛盾,
所以f'(x1)≠f'(x2).
(Ⅲ)故(Ⅱ)知,過點(diǎn)(0,2)可作y=f(x)的三條切線,
等價(jià)于方程2-f(t)=f'(t)(0-t)有三個(gè)相異的實(shí)根,
即等價(jià)于方程有三個(gè)相異的實(shí)根.
設(shè),則
由于a>0,故有
t(-∞,0)
g'(t)+-+
g(t)極大值1極小值
由g(t)的單調(diào)性知:要使g(t)=0有三個(gè)相異的實(shí)根,當(dāng)且僅當(dāng)

∴a的取值范圍是
點(diǎn)評(píng):本題主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想及有限與無限思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
處取得最大值2,其圖象與軸的相鄰兩個(gè)交點(diǎn)的距離為
π
2

(I)求f(x)的解析式;
(II)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
處取得最大值2,其圖象與軸的相鄰兩個(gè)交點(diǎn)的距離為
π
2

(I)求f(x)的解析式;
(II)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南省株洲市醴陵二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=log2(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)函數(shù),其中a>0.若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省哈爾濱三中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù),其中a>0,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為x軸
(1)若x=1為f(x)的極值點(diǎn),求f(x)的解析式
(2)若過點(diǎn)(0,2)可作曲線y=f(x)的三條不同切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省高考數(shù)學(xué)模擬最后一卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)ω(其中A>0,ω>0,-π<φ<π )在x=處取得最大值2,其圖象與軸的相鄰兩個(gè)交點(diǎn)的距離為
(I)求f(x)的解析式;
(II)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案