20.已知等差數(shù)列的前n項和為Sn,且S15>0,S16<0,則此數(shù)列中絕對值最小的項為(  )
A.第5項B.第6項C.第7項D.第8項

分析 由等差數(shù)列的求和公式和性質(zhì)可得a8>0,a8+a9<0,結(jié)合等差數(shù)列的通項公式為n的一次函數(shù)可得結(jié)論.

解答 解:由題意和等差數(shù)列的性質(zhì)可得S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=$\frac{15×2{a}_{8}}{2}$=15a8>0,∴a8>0
同理可得S16=$\frac{16({a}_{1}+{a}_{16})}{2}$=8(a8+a9)<0,∴a8+a9<0,
結(jié)合a8>0可得a9<0且|a8|<|a9|,
故選:D

點評 本題考查等差數(shù)列的性質(zhì),涉及求和公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知tan($\frac{π}{4}+a$)=3+$2\sqrt{2}$.
(Ⅰ)求tana的值;
(Ⅱ)求cos2(π-a)+sin($\frac{3π}{2}+a$)cos($\frac{π}{2}$+a)+2sin2(a-π)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.對任意的x∈(0,m],不等式(a-lnx)(a-ex)≤0恒成立,則a•m的最大值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.不通過求值,比較下列各組中兩個三角函數(shù)值的大。
(1)sin103°15′與sin164°30′;
(2)sin(-$\frac{54}{7}$π)與sin(-$\frac{63}{8}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知A={x||x|<5,x∈Z},B={x|-2x≥-6,x∈N},則A∩B={0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在等差數(shù)列{an}中,a1=-31,Sn為數(shù)列{an}的前n項和,S10=S22
(1)求{an}的通項公式,并判斷2015是否是數(shù)列{an}的項;
(2)這個數(shù)列前多少項的和最小,最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)y=cosx的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得圖象向右平移$\frac{π}{4}$個單位長度得曲線C,則曲線C對應(yīng)的函數(shù)解析式為y=cos($\frac{x}{2}$-$\frac{π}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≥0}\\{y-x-1≤0}\\{x≤1}\end{array}\right.$,則$\frac{x+2y}{2x+y}$的取值范圍是[1,$\frac{7}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知cosθ=$\frac{3}{5}$,求θ的其他各三角函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案