A. | ①③④ | B. | ②③ | C. | ②④ | D. | ①③ |
分析 由已知中函數(shù)f(x)=lg(x2+ax-a-1),我們易判斷出其真數(shù)部分的范圍,結(jié)合對數(shù)函數(shù)的性質(zhì)可判斷①與②的真假,由偶函數(shù)的定義,可判斷③的正誤,再由復(fù)合函數(shù)單調(diào)性的判斷方法及函數(shù)的定義域,可判斷④的對錯.進(jìn)而得到結(jié)論.
解答 解:∵u=x2+ax-a-1的最小值為-$\frac{1}{4}$(a2+4a+4)≤0
∴①函數(shù)f(x)的值域?yàn)镽為真命題;
但函數(shù)f(x)無最小值,故②錯誤;
當(dāng)a=0時,易得f(-x)=f(x),即③函數(shù)f(x)為偶函數(shù)正確;
若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,
則-$\frac{a}{2}$≤2,且4+2a-a-1>0,解得a>-3,故④錯誤;
故選:D.
點(diǎn)評 本題考查的知識點(diǎn)是對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)、對數(shù)函數(shù)的定義和值域、偶函數(shù)及復(fù)合函數(shù)的單調(diào)性,是一道函數(shù)的綜合應(yīng)用題,其中④中易忽略真數(shù)部分必須大于0,而錯判為真命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 大前提錯誤導(dǎo)致結(jié)論錯誤 | |
B. | 小前提錯誤導(dǎo)致結(jié)論錯誤 | |
C. | 推理形式錯誤導(dǎo)致結(jié)論錯誤 | |
D. | 大前提和小前提都錯誤導(dǎo)致結(jié)論錯誤 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com