7.已知集合A={0,1,a},B={0,3,3a},若A∩B={0,3},則A∪B={0,1,3,9}.

分析 根據(jù)集合的基本運算進行求解即可.

解答 解:∵A∩B={0,3},
∴a=3,
則B={0,3,9},
則A∪B={0,1,3,9},
故答案為:{0,1,3,9},

點評 本題主要考查集合的基本運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=lnx+$\frac{1}{x}$,且2<p<q.,求證:對于x∈(p,q),有$\frac{f(x)-f(p)}{x-p}$>$\frac{f(x)-f(q)}{x-q}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=ax3+ax2+x-1在實數(shù)R上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.[-1,2]B.[0,3]C.[2,5]D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認為猜對歌曲名稱與否和年齡有關(guān);說明你的理由;(下面的臨界值表供參考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)現(xiàn)計劃在這次場外調(diào)查中按年齡段選取9名選手,并抽取3名幸運選手,求3名幸運選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.5位同學(xué)排隊,其中3位女生,2位男生.如果2位男生不能相鄰,且女生甲不能排在排頭,則排法種數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若雙曲線t2y2-x2=t2(t≠0)經(jīng)過點$(2,\sqrt{2})$,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等腰△ABC中,角A,B,C的對邊分別為a,b,c,若sinB=sinAcosC-$\frac{1}{2}$sinC,且a=$\sqrt{3}$,則△ABC的面積為( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{4}$
C.$\sqrt{3}$D.條件不足,無法計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)滿足f(0)=1,且對于任意實數(shù)x,y∈R都有:f(xy+1)=f(x)f(y)-f(y)-x+2,若x∈[1,3],則$\frac{f(x-1)}{{f}^{2}(x)+1}$的最大值為( 。
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{1}{5}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知半圓C:(x-2)2+y2=4(y≥0),直線 l:x-2y-2=0.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(I)寫出C與 l的極坐標(biāo)方程;
(Ⅱ)記A為C直徑的右端點,C與l交于點M,且M為圓弧AB的中點,求|OB|.

查看答案和解析>>

同步練習(xí)冊答案