分析 (Ⅰ)由f($\frac{1}{2}$)=$\frac{2}{5}$.可求a的值,再由奇偶性的定義,可判斷函數(shù)f(x)的奇偶性;
(Ⅱ)證法一:設(shè)-1<x1<x2<1,作差判斷f(x1)的f(x2)大小,根據(jù)單調(diào)性的定義,可得:函數(shù)f(x)在(-1,1)上是增函數(shù)f(x1)<f(x2),
證法二:求導(dǎo),由當(dāng)x∈(-1,1)時(shí),f′(x)>0恒成立,可得:函數(shù)f(x)在(-1,1)上是增函數(shù)
解答 解(Ⅰ)∵函數(shù)f(x)=$\frac{ax}{{1+{x^2}}}$滿足f($\frac{1}{2}$)=$\frac{2}{5}$.
∴$\frac{\frac{1}{2}a}{\frac{5}{4}}$=$\frac{2}{5}$.
解得:a=1,
∴函數(shù)f(x)=$\frac{x}{1+{x}^{2}}$的定義域R關(guān)于原點(diǎn)對(duì)稱(chēng),
又由$f(-x)=\frac{-x}{{{x^2}+1}}=-f(x)$,
∴f(x)為奇函數(shù)…(3分)
(Ⅱ)證法一:設(shè)-1<x1<x2<1,
則x1-x2<0,1-x1x2>0,
∴$f({x_1})-f({x_2})=\frac{{({x_1}-{x_2})(1-{x_1}{x_2})}}{(1+x_1^2)(1+x_2^2)}$<0,
即f(x1)<f(x2),
∴函數(shù)f(x)在(-1,1)上是增函數(shù)…(8分)
證法二:∵f(x)=$\frac{x}{1+{x}^{2}}$,
∴f′(x)=$\frac{1-{x}^{2}}{(1+{x}^{2})^{2}}$,
當(dāng)x∈(-1,1)時(shí),
f′(x)>0恒成立,
∴函數(shù)f(x)在(-1,1)上是增函數(shù)…(8分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,函數(shù)的奇偶性,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1.4,2) | B. | (1,1.4) | C. | (1,1.5) | D. | (1.5,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n=n+1,i>1009 | B. | n=n+2,i>1009 | C. | n=n+1,i>1010 | D. | n=n+2,i>1010 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com