【題目】中央電視臺(tái)電視公開課《開講了》需要現(xiàn)場(chǎng)觀眾,先邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生如下表所示:
大學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 8 | 12 | 8 | 12 |
從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座.
(1)求各大學(xué)抽取的人數(shù);
(2)從(1)中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來自同一所大學(xué)的概率.
【答案】(1)甲,乙,丙 ,丁;(2).
【解析】
試題分析:(1)從這名學(xué)生中按照分層抽樣的方式抽取名學(xué)生,則各大學(xué)人數(shù)分別為甲,乙,丙,丁;(2)利用列舉出從參加問卷調(diào)查的名學(xué)生中隨機(jī)抽取兩名學(xué)生的方法共有種,這來自同一所大學(xué)的取法共有種,再利用古典慨型的概率計(jì)算公式即可得出.
試題解析:(1)從這40名學(xué)生中按照分層抽樣的方式抽取10名學(xué)生,則各大學(xué)人數(shù)分別為甲2,乙3,丙2,丁3.
(2)設(shè)乙中3人為,丁中3人為,從這6名學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言的結(jié)果為,,,,,,,,,,,,,,,共15種,
這2名同學(xué)來自同一所大學(xué)的結(jié)果共6種,所以所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時(shí)不超過千米.已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:固定部分為元,可變部分與速度(單位; )的平方成正比,且比例系數(shù)為.
(1)求汽車全程的運(yùn)輸成本(單位:元)關(guān)于速度(單位; )的函數(shù)解析式;
(2)為了全程的運(yùn)輸成本最小,汽車應(yīng)該以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過點(diǎn),過定點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第屆夏季奧林匹克運(yùn)動(dòng)會(huì)2016年8月5日到2016年8月21日在巴西里約熱內(nèi)盧舉行,為了解我校學(xué)生“收看奧運(yùn)會(huì)足球賽”是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取名進(jìn)行了問卷調(diào)查,得到列聯(lián)表,從這名同學(xué)中隨機(jī)抽取人,抽到“收看奧運(yùn)會(huì)足球賽 ”的學(xué)生的概率是.
男生 | 女生 | 合計(jì) | |
收看 | |||
不收看 | |||
合計(jì) |
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析“收看奧運(yùn)會(huì)足球賽”與性別是否有關(guān);
(2)若從這名同學(xué)中的男同學(xué)中隨機(jī)抽取人參加有獎(jiǎng)競(jìng)猜活動(dòng),記抽到收看奧運(yùn)會(huì)足球賽”的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,且滿足,等差數(shù)列的前項(xiàng)和為,且, .
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)若數(shù)列的通項(xiàng)公式為,問是否存在互不相等的正整數(shù), , 使得, , 成等差數(shù)列,且 , , 成等比數(shù)列?若存在,求出, , ;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.
(1)求的值;
(2)若在(其中上是單調(diào)函數(shù), 求的取值范圍;
(3)當(dāng)時(shí), 求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)在(1)的條件下,若是函數(shù)的零點(diǎn),且,求的值;
(3)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是,上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),沿折起,得到如圖2所示的三棱錐,其中.
(1)求證:平面平面
(2)若為,上的中點(diǎn),為中點(diǎn),求異面直線與所成角的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com