在極坐標(biāo)系中,已知圓ρ=asinθ(a>0)與直線ρcos(θ+
π
4
)=1相切,求實(shí)數(shù)a的值.
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把圓ρ=asinθ化成普通方程,直線ρcos(θ+
π
4
)=1化成普通方程,由圓心到直線的距離d=r,求出a的值.
解答: 解:將圓ρ=asinθ化成普通方程是x2+y2=ay,
整理,得x2+(y-
a
2
)
2
=
a2
4
;
將直線ρcos(θ+
π
4
)=1化成普通方程是
x-y-
2
=0. 
由題意,圓心到直線的距離是d=r,
|-
a
2
-
2
|
2
=
a
2

解得a=4+2
2
點(diǎn)評(píng):本小題考查了直線與圓的極坐標(biāo)方程的應(yīng)用等基礎(chǔ)知識(shí),也考查運(yùn)算求解運(yùn)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相交,則雙曲線的離心率的取值范圍是(  )
A、(1,3)
B、(
2
3
3
,+∞)
C、(1,
2
3
3
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+2)=-f(x)+f(1)成立,若函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱,則f(2014)=( 。
A、3B、2014
C、0D、-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一圓的方程式為x2+y2=v2t2,將該圓向下移動(dòng)
1
2
gt2個(gè)單位,求移動(dòng)后圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-ax2+1在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn}滿足a1=
2
3
,an+1=
2an
an+2
,b1+2b2+22b3+…+2n-1bn=n(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
bn
an
}的前n項(xiàng)和Tn,問(wèn)是否存在正整數(shù)m、M且M-m=3,使得m<Tn<M對(duì)一切n∈N*恒成立?若存在,求出m、M的值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)cn=
(anan+2)2
an+1
,求證:c1+c2+c3+…+cn
25
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個(gè)條件:
①對(duì)任意正數(shù)x,y,都有f(xy)=f(x)+f(y);
②當(dāng)x>1時(shí),f(x)<0;
③f(3)=-1.
(Ⅰ)求f(1)、f(
1
9
)的值;
(Ⅱ)證明:f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=|x2-2|x||,求當(dāng)x∈(-2,2)時(shí)函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2-4bx+2.
(Ⅰ)任取以a∈{1,2,3},b∈{-1,1,2,3,4},記“f(x)在區(qū)間[1,+∞)上是增函數(shù)”為事件A,求A發(fā)生的概率;
(Ⅱ)任。╝,b)∈{(a,b)|a+4b+2≤0,b>0},記“關(guān)于x的方程f(x)=0有一個(gè)大于1的根和一個(gè)小于1的根”為事件B,求B發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案