設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個條件:
①對任意正數(shù)x,y,都有f(xy)=f(x)+f(y);
②當x>1時,f(x)<0;
③f(3)=-1.
(Ⅰ)求f(1)、f(
1
9
)的值;
(Ⅱ)證明:f(x)在(0,+∞)上是減函數(shù).
考點:抽象函數(shù)及其應(yīng)用
專題:計算題,證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)令x=y=1,求出f(1)=0,令x=y=3求出f(9),令x=9,y=
1
9
,求出f(
1
9
);
(Ⅱ)0<x1<x2,則
x2
x1
>1
,則由②得f(
x2
x1
)<0,再由①得到f(x2)<f(x1),由函數(shù)的單調(diào)性即可得證.
解答: (Ⅰ)解:令x=y=1,得f(1)=2f(1),即f(1)=0,
而f(9)=f(3)+f(3)=-1-1=-2,
且f(9)+f(
1
9
)=f(1)=0,得f(
1
9
)=2.
(Ⅱ)證明:若0<x1<x2,則
x2
x1
>1
,
則由②得f(
x2
x1
)<0,
∴f(x2)=f(
x2
x1
•x1)=f(
x2
x1
)+f(x1)<f(x1),
∴f(x)在(0,+∞)上是減函數(shù).
點評:本題考查函數(shù)的單調(diào)性和運用,考查抽象函數(shù)值的求法:賦值法.屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

關(guān)于x的不等式x2-2ax-8a2<0的解集為(x1,x2),且x12-x22=15,則實數(shù)a=(  )
A、
5
2
B、-
5
2
C、-
5
2
5
2
D、-
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為f(x)奇函數(shù),求實a數(shù)的值;
(3)在(2)的條件下,若對任意的t∈R,不等式f(t2+2)+f(-t2-t)>0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓ρ=asinθ(a>0)與直線ρcos(θ+
π
4
)=1相切,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x+
1+x2
在區(qū)間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.將△ABD沿邊AB折起,使得△ABD與△ABC成直二面角D-AB-C,如圖二,在二面角D-AB-C中.
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,Sn=2an-1(Sn為數(shù)列{an}的前n項和),數(shù)列{bn}為等差數(shù)列且滿足b1=a4,b4=a2
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{|bn|}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,DC⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=
3

( I)求證:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD⊥底面ABCD,在△PAD中
PA
+
PD
=2
PE
,且AD=2PE.
(1)求證:平面PAB⊥平面PCD;
(2)如果AB=BC,∠PAD=60°,求DC與平面PBE的正弦值.

查看答案和解析>>

同步練習冊答案