已知一圓的方程式為x2+y2=v2t2,將該圓向下移動
1
2
gt2個單位,求移動后圓的方程.
考點:圓的一般方程
專題:直線與圓
分析:直接利用圖象平移原則,推出圓的方程即可.
解答: 解:圓的方程式為x2+y2=v2t2,將該圓向下移動
1
2
gt2個單位,
可得:(x-
1
2
gt22+y2=v2t2,
移動后圓的方程:(x-
1
2
gt22+y2=v2t2
點評:本題考查圖象的平移變換,圓的方程的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+m(m∈R),若以點M(2,0)為圓心的圓與直線l相切于點P,且P在y軸上,則該圓的方程為( 。
A、(x-2)2+y2=8
B、(x+2)2+y2=8
C、x2+(y-2)2=8
D、x2+(y+2)2=8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,則當k>0時,下列函數(shù)y=f[f(x)]+1的零點個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不同三點A,B,C滿足(
BC
CA
):(
CA
AB
):(
AB
BC
)=3:4:5,則這三點( 。
A、組成銳角三角形
B、組成直角三角形
C、組成鈍角三角形
D、在同一條直線上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)
(1)判斷并證明函數(shù)的單調性;
(2)若函數(shù)為f(x)奇函數(shù),求實a數(shù)的值;
(3)在(2)的條件下,若對任意的t∈R,不等式f(t2+2)+f(-t2-t)>0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知兩個正四棱錐P-ABCD與Q-ABCD的高都是2,AB=4.
(1)求證:PQ⊥平面ABCD;
(2)求點P到平面QAD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓ρ=asinθ(a>0)與直線ρcos(θ+
π
4
)=1相切,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.將△ABD沿邊AB折起,使得△ABD與△ABC成直二面角D-AB-C,如圖二,在二面角D-AB-C中.
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若二階矩陣M滿足:M
12
34
=
58
46

(Ⅰ)求二階矩陣M;
(Ⅱ)若曲線C:x2+2xy+2y2=1在矩陣M所對應的變換作用下得到曲線C′,求曲線C′的方程.

查看答案和解析>>

同步練習冊答案