17.已知扇形的半徑為2,面積為$\frac{2}{5}$π,則該扇形的圓心角為$\frac{π}{5}$.

分析 根據(jù)扇形的面積根據(jù)進行計算即可.

解答 解:∵r=2,S扇形=$\frac{2}{5}$π,
∴S扇形=$\frac{1}{2}$•α•r2,
即$\frac{1}{2}$•α•22=$\frac{2}{5}$π,
解得α=$\frac{π}{5}$;
∴這個扇形的圓心角為$\frac{π}{5}$.
故答案為:$\frac{π}{5}$.

點評 本題考查了扇形的面積公式的應(yīng)用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項和為Tn,a1=1且a1+2a2+4a3+…+2n-1an=2n-1,則T8-2等于( 。
A.$\frac{31}{32}$B.$\frac{255}{64}$C.$\frac{63}{64}$D.$\frac{127}{128}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.等差數(shù)列{an}中,a1<0,S9=S12,若Sn有最小值,則n=( 。
A.10B.10或11C.11D.9或10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥-x}\\{x≤2}\end{array}\right.$表示的平面區(qū)域為S,點P(x,y)∈S,則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=$\frac{3}{1-\sqrt{1-x}}$的定義域可用區(qū)間表示為(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知實數(shù)a,b均不為零,$\frac{asin2+bcos2}{acos2-bsin2}$=tanβ,且β-2=$\frac{π}{6}$,則$\frac{a}$=(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(cos2x,$\sqrt{3}$sinx),$\overrightarrow$=(1,cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$+m,且當x∈[0,$\frac{π}{6}$]時,f(x)的最小值為2.
(Ⅰ)求m的值,并求f(x)圖象的對稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)2]-f(x),x∈[0,$\frac{π}{6}$],求g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在平面直角坐標系中,已知向量$\overrightarrow{a}$=(1,2),又點A(8,0),B(-8,t),C(8sinθ,t).
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,求向量$\overrightarrow{OB}$的坐標;
(2)若向量$\overrightarrow{AC}$與向量$\overrightarrow{a}$共線,當tsinθ取最小值時,求$\overrightarrow{OA}$•$\overrightarrow{OC}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.某幾何體的三視圖如圖,則幾何體的表面積為6+2$\sqrt{5}$+2$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案