已知△ABC的三內(nèi)角A、B、C滿足條件
sin2A-(sinB-sinC)2
sinBsinC
=1,則角A等于
 
考點(diǎn):余弦定理
專(zhuān)題:解三角形
分析:已知等式左邊分子變形后,利用正弦定理化簡(jiǎn),整理得到關(guān)系式,再利用余弦定理表示出cosA,把得出的關(guān)系式代入求出cosA的值,即可確定出A的度數(shù).
解答: 解:利用正弦定理化簡(jiǎn)得:
sin2A-(sinB-sinC)2
sinBsinC
=
sin2A-sin2B-sin2C+2sinBsinC
sinBsinC
=
a2-b2-c2+2bc
bc
=1,
整理得:b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
,
則A=60°.
故答案為:60°
點(diǎn)評(píng):此題考查了正弦、余弦定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知b2+c2-a2=bc.則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|2a≤x≤a+3},B={x|x>1或x<-6}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知1<a<b,則( 。
A、2a<2b
B、loga2<logb2
C、(lga)2>(lgb)2
D、(
1
2
)a<(
1
2
)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x2
1+x2
,則f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(2014)+f(
1
2014
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
2i
1-i
,則z的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知lgx+lgy=2lg(x-2y),則log2
x
y
等于( 。
A、1或2B、0或2C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

矩陣M滿足
12
21
M=
10
56
,設(shè)矩陣A=M5,求向量α=
5
1
經(jīng)過(guò)矩陣A變換后得到的向量β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上為偶函數(shù),且當(dāng)x≥-2時(shí),f(x+2)=x2+8x+7,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案