若復數(shù)z=
2i
1-i
,則z的模為
 
考點:復數(shù)求模
專題:數(shù)系的擴充和復數(shù)
分析:直接利用復數(shù)的模的求法求解即可.
解答: 解:復數(shù)z=
2i
1-i
,
∴|z|=|
2i
1-i
|
=
|2i|
|1-i|
=
2
2
=
2

故答案為:
2
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,2)上是增函數(shù)的是( 。
A、y=
x
B、y=(
1
3
x
C、y=log
1
2
x
D、y=-x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(π-α)=
4
5
,α∈(0,
π
2
)

(1)求sin2α的值;
(2)求函數(shù)f(x)=
5
3
cosαsin2x-cos2x的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值
(1)(-0.1)0+
32
×2 
2
3
+(
1
4
 -
1
2

(2)log3
27
+lg25+lg4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三內角A、B、C滿足條件
sin2A-(sinB-sinC)2
sinBsinC
=1,則角A等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的首項及公差均是正整數(shù),前n項和為Sn,且a1>1,a4>6,S3≤12則a2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算log36-log32+4 
1
2
-3 log34的結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)
1-x
ax
+lnx,(a≠0)
(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求a的取值范圍;
(2)當a=1時,求f(x)在區(qū)間(
1
2
,2)
上的值域;
(3)當a=1時,問:是否存在正整數(shù)M,使得當自然數(shù)n≥M時,恒有l(wèi)nn>
1
2
+
1
3
+
1
4
+…+
1
n
成立?若存在,求出M的最小值,并證明你的結論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓C:
y2
9
+
x2
4
=1
上一動點P(x0,y0 ),x0y0≠0,引圓O:x2+y2=4的兩條切線PA、PB,A、B為切點,
(1)如果P點坐標為(-1,
3
3
2
)
,求直線AB的方程;
(2)兩條切線PA、PB是否可能互相垂直?若能垂直,求出點P的坐標;若不可能垂直,請說明理由.

查看答案和解析>>

同步練習冊答案