甲、乙兩物體分別從相距70m的兩處同時相向運動.甲第1分鐘走2m,以后每分鐘比前1分鐘多走1m,乙每分鐘走5m. 則甲、乙開始運動后
 
分鐘相遇;如果甲、乙到達對方起點后立即折返,甲繼續(xù)每分鐘比前1分鐘多走1m,乙繼續(xù)每分鐘走5m,那么開始運動
 
分鐘后第二次相遇.
考點:函數(shù)模型的選擇與應(yīng)用
專題:計算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)甲、乙兩物體x分鐘走過的路程為f(x)m,g(x)m,從而得到f(x)=2+3+4+5+…+(x+1)=
(2+x+1)
2
x=
x+3
2
x
;g(x)=5x;從而解得.
解答: 解:設(shè)甲、乙兩物體x分鐘走過的路程為f(x)m,g(x)m;
故f(x)=2+3+4+5+…+(x+1)
=
(2+x+1)
2
x=
x+3
2
x
;
g(x)=5x;
則由題意可得,
f(x)+g(x)=
x+3
2
x
+5x=70,
解得,x=7;
分析可知,甲先到達對方起點,
又∵
14+3
2
×14=119,
則再次相遇是在二人到對方起點之后,
故,
x+3
2
x
+5x=70×3,
解得,x=15;
故答案為:7,15.
點評:本題考查了函數(shù)在實際問題中的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

球面上有三個點A、B、C.A、B,A、C間的球面距離等于大圓周長的
1
6
.B和C間的球面距離等于大圓周長的
1
4
.如果球的半徑是R,那么球心到截面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中定義兩點P(x1,y1),Q(x2,y2)之間的交通距離為d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到點A(1,3),B(6,9)的交通距離相等,其中實數(shù)x,y滿足0≤x≤10,0≤y≤10,則所有滿足條件的點C的軌跡的長之和為( 。
A、1
B、5
2
C、4
D、5(
2
+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)命題P:|m|≤1,命題q:方程
x2
m-2
+
y2
m
=1
表示的曲線是雙曲線,若命題p,q中有且只有一個是正確的,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,錯誤的是( 。
A、有時可以把分類變量的不同取值用數(shù)字表示,但這時的數(shù)字除了分類以外沒有其他含義
B、在統(tǒng)計學中,獨立性檢驗就是檢驗兩個分類變量是否有關(guān)系的一種方法
C、在進行獨立性檢驗時,可以先利用二維條形圖粗略的判斷兩個分類變量是否有關(guān)系
D、通過二維條形圖可以精確的給出所得結(jié)論的可靠程度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱柱ABC-A1B1C1,底面邊長為8,對角線B1C=10,D為AC的中點.
(1)求證AB1∥平面C1BD;
(2)求直線AB1到平面C1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
x23456
y2238556570
若由資料可知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程;
(2)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
的夾角為120°,|
a
|=2,且(2
a
+
b
)⊥
a
,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(x2+1)(x≤0),則f-1(2)=(  )
A、
10
B、-
10
C、3
11
D、-3
11

查看答案和解析>>

同步練習冊答案