A. | -$\frac{7}{8}$ | B. | -$\frac{\sqrt{15}}{8}$ | C. | 1 | D. | $\frac{\sqrt{15}}{8}$ |
分析 由條件利用兩角和的正弦公式、二倍角公式求得,cosα-sinα,或 cosα+sinα的值,由此求得sin2α的值.
解答 解:∵α∈($\frac{π}{2}$,π),且2cos2α=sin($\frac{π}{4}$-α),
∴2(cos2α-sin2α)=$\frac{\sqrt{2}}{2}$( cosα-sinα),
∴cosα+sinα=-$\frac{\sqrt{2}}{4}$,或 cosα-sinα=0(根據(jù)角的取值范圍,此等式不成立排除).
∵cosα+sinα=-$\frac{\sqrt{2}}{4}$,則有1+sin2α=$\frac{1}{8}$,sin2α=$-\frac{7}{8}$.
故選:A.
點評 本題考查了三角函數(shù)的化簡求值,考查了兩角和差的正弦、余弦公式的應(yīng)用,二倍角公式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-16,84] | B. | [-50,50] | C. | [-16,16] | D. | [-16,50] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$ | B. | $\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AB}$ | C. | $\overrightarrow{BD}$=$\frac{3}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$ | D. | $\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{3}{2}$$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2]∪(-1,+∞) | B. | [-2,-1) | C. | (-∞,-1) | D. | (-2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com