20.若2cos2α=sin($\frac{π}{4}$-α),且α∈($\frac{π}{2}$,π),則sin2α的值為(  )
A.-$\frac{7}{8}$B.-$\frac{\sqrt{15}}{8}$C.1D.$\frac{\sqrt{15}}{8}$

分析 由條件利用兩角和的正弦公式、二倍角公式求得,cosα-sinα,或 cosα+sinα的值,由此求得sin2α的值.

解答 解:∵α∈($\frac{π}{2}$,π),且2cos2α=sin($\frac{π}{4}$-α),
∴2(cos2α-sin2α)=$\frac{\sqrt{2}}{2}$( cosα-sinα),
∴cosα+sinα=-$\frac{\sqrt{2}}{4}$,或 cosα-sinα=0(根據(jù)角的取值范圍,此等式不成立排除).
∵cosα+sinα=-$\frac{\sqrt{2}}{4}$,則有1+sin2α=$\frac{1}{8}$,sin2α=$-\frac{7}{8}$.
故選:A.

點評 本題考查了三角函數(shù)的化簡求值,考查了兩角和差的正弦、余弦公式的應(yīng)用,二倍角公式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=2x+b為奇函數(shù),則函數(shù)g(x)=x2+bx+1的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點M(6,-8),點P(x,y)滿足不等式(x-3)2+(y+2)2≤25,則$\overrightarrow{OM}•\overrightarrow{OP}$的取值范圍為( 。
A.[-16,84]B.[-50,50]C.[-16,16]D.[-16,50]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x},x∈[-1,2]}\\{8-2x,x∈(2,4]}\end{array}}\right.$,則f(log23)=3,若f(f(t))∈[0,1],則實數(shù)t的取值范圍是[log2$\frac{7}{2}$,$\frac{9}{4}$]或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)D是△ABC所在平面內(nèi)一點,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,則( 。
A.$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$B.$\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AB}$C.$\overrightarrow{BD}$=$\frac{3}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$D.$\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{3}{2}$$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)在點x=a處可導(dǎo),試用a、f(a)和f′(a)表示$\underset{lim}{x→a}$$\frac{af(x)-xf(a)}{x-a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平行四邊形ABCD中,$AB=\frac{1}{2},∠BAD=\frac{π}{3},E$為CD的中點,若$\overrightarrow{AC}•\overrightarrow{BE}=1$.則AD的長為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.執(zhí)行如圖所示的程序框圖,則輸出的i=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|-2≤x<0},B={x|x<-1},則A∩B=( 。
A.(-∞,-2]∪(-1,+∞)B.[-2,-1)C.(-∞,-1)D.(-2,+∞)

查看答案和解析>>

同步練習(xí)冊答案