10.已知集合A={x|-2≤x<0},B={x|x<-1},則A∩B=( 。
A.(-∞,-2]∪(-1,+∞)B.[-2,-1)C.(-∞,-1)D.(-2,+∞)

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A=[-2,0),B=(-∞,-1),
∴A∩B=[-2,-1),
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若2cos2α=sin($\frac{π}{4}$-α),且α∈($\frac{π}{2}$,π),則sin2α的值為( 。
A.-$\frac{7}{8}$B.-$\frac{\sqrt{15}}{8}$C.1D.$\frac{\sqrt{15}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將${({x+\frac{4}{x}-4})^3}$展開后,常數(shù)項(xiàng)是-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y>0}\end{array}\right.$,則z=y-2|x|的最大值為( 。
A.-8B.-4C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i為虛數(shù)單位,a為正實(shí)數(shù),若|$\frac{a-i}{i}$|=2,則a=( 。
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y-2≤0\\ y≤1.\end{array}\right.$,則目標(biāo)函數(shù)z=x-3y的最小值為(  )
A.0B.1C.$-\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且橢圓C與圓M:x2+(y-3)2=4的公共弦長為4
(1)求橢圓C的方程;
(2)已知O為坐標(biāo)原點(diǎn),過橢圓C的右頂點(diǎn)A作直線l與圓x2+y2=$\frac{8}{5}$相切并交橢圓C于另一點(diǎn),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,B分別為x軸,y軸上一點(diǎn),且|AB|=1,若P(1,$\sqrt{3}$ ),則|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|的取值范圍是(  )
A.[5,6]B.[6,7]C.[6,9]D.[5,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面α∥β∥γ,A、C∈α,B、D∈γ,異面直線AB和CD分別與β交于E和G,連結(jié)AD和BC分別交β于F、H.
(1)求證:$\frac{AE}{EB}$=$\frac{CG}{GD}$;
(2)判斷四邊形EFGH是哪一類四邊形;
(3)若AC=BD=a,求四邊形EFGH的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案