【題目】下列說法正確的是( )

A.若“”為真命題,則“”為真命題

B.命題“”的否定是“

C.命題“若,則”的逆否命題為真命題

D.”是“”的必要不充分條件

【答案】C

【解析】

選項A,根據(jù)“或”一真則真,“且”一假則假,可得正誤;選項B,含有一個量詞的命題的否定要注意:一改量詞,二改結(jié)論;選項C,通過判斷原命題的真假,可得C的正誤;選項D,求出方程的根,即得D的正誤.

”為真,則命題有可能一真一假,則“”為假,故選項A說法不正確;

命題“”的否定應(yīng)該是“”,故選項B說法不正確;

因命題“若,則”為真命題,所以其逆否命題為真命題,故選項C說法正確;

,則;若,則.所以“”是“”的充分不必要條件,選項D說法不正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點, 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線)與曲線的異于極點的交點為,與曲線的交點為,求.

【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為(2) .

【解析】試題分析:(1先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線極坐標(biāo)方程;2代人曲線的極坐標(biāo)方程,再根據(jù).

試題解析:1)曲線的參數(shù)方程為參數(shù))

可化為普通方程

,可得曲線的極坐標(biāo)方程為,

曲線的極坐標(biāo)方程為.

2)射線)與曲線的交點的極徑為,

射線)與曲線的交點的極徑滿足,解得

所以.

型】解答
結(jié)束】
23

【題目】設(shè)函數(shù)

(1)設(shè)的解集為,求集合;

(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實數(shù)),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線C1:的準(zhǔn)線1x軸交于橢圓C2的右焦點F2,F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,MC1上一動點,且在P,Q之間移動.

1)當(dāng)取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,;如圖,將沿邊折起,連結(jié),使,求證:

1)平面平面;

2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生課外生活,某市組織了高中生鋼筆書法比賽,比賽分兩個階段進(jìn)行:第一階段由評委給出所有參賽作品評分,并確定優(yōu)勝者;第二階段為附加賽,參賽人員由組委會按規(guī)則另行確定.數(shù)據(jù)統(tǒng)計員對第一階段的分?jǐn)?shù)進(jìn)行了統(tǒng)計分析,這些分?jǐn)?shù)都在內(nèi),在以組距為5畫分?jǐn)?shù)的頻率分布直方圖(設(shè)“”)時,發(fā)現(xiàn)滿足.

1)試確定的所有取值,并求;

2)組委會確定:在第一階段比賽中低于85分的參賽者無緣獲獎也不能參加附加賽;分?jǐn)?shù)在的參賽者評為一等獎;分?jǐn)?shù)在的同學(xué)評為二等獎,但通過附加賽有的概率提升為一等獎;分?jǐn)?shù)在的同學(xué)評為三等獎,但通過附加賽有的概率提升為二等獎(所有參加附加賽的獲獎人員均不降低獲獎等級).已知學(xué)生均參加了本次比賽,且學(xué)生在第一階段評為二等獎.

)求學(xué)生最終獲獎等級不低于學(xué)生的最終獲獎等級的概率;

)已知學(xué)生都獲獎,記兩位同學(xué)最終獲得一等獎的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中國決勝全面建成小康社會的關(guān)鍵之年,如何更好地保障和改善民生,如何切實增強政策“獲得感”,成為2019年全國兩會的重要關(guān)切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊5個民生項目,得到如下信息:

①若該地區(qū)引進(jìn)甲項目,就必須引進(jìn)與之配套的乙項目;

②丁、戊兩個項目與民生密切相關(guān),這兩個項目至少要引進(jìn)一個;

③乙、丙兩個項目之間有沖突,兩個項目只能引進(jìn)一個;

④丙、丁兩個項目關(guān)聯(lián)度較高,要么同時引進(jìn),要么都不引進(jìn);

⑤若引進(jìn)項目戊,甲、丁兩個項目也必須引進(jìn).

則該地區(qū)應(yīng)引進(jìn)的項目為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E

(1)求證:四邊形ACC1A1為矩形;

(2)求二面角E-B1C-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省級示范高中高三年級對各科考試的評價指標(biāo)中,有“難度系數(shù)“和“區(qū)分度“兩個指標(biāo)中,難度系數(shù),區(qū)分度.

1)某次數(shù)學(xué)考試(滿分為150分),隨機從實驗班和普通班各抽取三人,實驗班三人的成績分別為147,142137;普通班三人的成績分別為97,102113.通過樣本估計本次考試的區(qū)分度(精確0.01).

2)如表表格是該校高三年級6次數(shù)學(xué)考試的統(tǒng)計數(shù)據(jù):

難度系數(shù)x

0.64

0.71

0.74

0.76

0.77

0.82

區(qū)分度y

0.18

0.23

0.24

0.24

0.22

0.15

①計算相關(guān)系數(shù)r,|r|<0.75時,認(rèn)為相關(guān)性弱;|r|≥0.75時,認(rèn)為相關(guān)性強.通過計算說明,能否利用線性回歸模型描述yx的關(guān)系(精確到0.01).

ti=|xi0.74|(i=1,2,…,6),求出y關(guān)于t的線性回歸方程,并預(yù)測x=0.75y的值(精確到0.01).

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)r,回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

同步練習(xí)冊答案