A. | $-\frac{{\sqrt{3}}}{4}$ | B. | $-\frac{1}{4}$ | C. | $-\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
分析 利用函數(shù)的圖象,通過KL=1以及∠KML=90°求出求出A,再求出函數(shù)的周期,確定ω,利用函數(shù)是偶函數(shù)求出φ,得到函數(shù)的解析式,即可求解f($\frac{1}{6}$)的值.
解答 解:因為f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,
$\overrightarrow{MK}•\overrightarrow{ML}$=0,∠KML=90°,|KL|=1,|ML|=$\frac{{\sqrt{2}}}{2}$,可得|KM|=$\frac{{\sqrt{2}}}{2}$,
所以解得:A=$\frac{1}{2}$,T=2,因為T=$\frac{2π}{ω}$,所以ω=π,
函數(shù)是偶函數(shù),0<φ<π,所以φ=$\frac{π}{2}$,
∴函數(shù)的解析式為:f(x)=$\frac{1}{2}$sin(πx+$\frac{π}{2}$),
所以f($\frac{1}{6}$)=$\frac{1}{2}$sin($\frac{π}{6}$+$\frac{π}{2}$)=$\frac{1}{2}$cos$\frac{π}{6}$=$\frac{\sqrt{3}}{4}$.
故選:D.
點評 本題考查函數(shù)的解析式的求法,函數(shù)奇偶性的應用,考查學生識圖能力、計算能力,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | $\sqrt{10}$ | C. | 3$\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $±2\sqrt{2}$ | C. | $±\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com