【題目】本題滿分14分如圖,已知橢圓,其左右焦點為,過點的直線交橢圓兩點,線段的中點為,的中垂線與軸和軸分別交于兩點,且、、構成等差數(shù)列.

1求橢圓的方程;

2的面積為,為原點的面積為.試問:是否存在直線,使得?說明理由.

【答案】1;2不存在直線,使得

【解析】

試題分析:1求橢圓的標準方程由已知、、構成等差數(shù)列,,由橢圓的定義可得,,由已知焦點為,可得,可求出,從而得橢圓的標準方程;2的面積為為原點的面積為.試問:是否存在直線,使得?說明理由,這是探索性命題,一般假設其存在,本題假設存在直線,使得 ,由題意直線不能與軸垂直,故方程為,將其代入,整理得 ,由根與系數(shù)關系,表示出的坐標,寫出中垂線方程,得的坐標,由于相似,若,則,建立方程,求解斜率的值,若有解,則存在,若無解,則不存在.

試題解析:1因為、構成等差數(shù)列,

所以,所以. 2

又因為,所以, 3分

所以橢圓的方程為. 4

2假設存在直線,使得 ,顯然直線不能與軸垂直.

方程為 5

將其代入,整理得 6分

,,所以

故點的橫坐標為.所以 8分

因為 ,所以 , 解得 ,

10分

相似,,則 11分

所以 , 12分

整理得 13分

因為此方程無解,所以不存在直線,使得 14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=2n2+n,n∈N*
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足an=4log2bn+3,n∈N* , 求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊長分別為a,b,c且滿足csinA= acosC,則sinA+sinB的最大值是(
A.1
B.
C.3
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實數(shù)a的取值范圍是(
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓上的一個動點,弦分別過左右焦點,且當線段的中點在軸上時,

(1)求該橢圓的離心率;(2)設,試判斷是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

在正三棱柱中,點的中點,

(1)求證:平面;

(2)試在棱上找一點,使

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解一個英語教改實驗班的情況,舉行了一次測試,將該班30位學生的英語成績進行統(tǒng)計,得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求出該班學生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(2)從成績低于80分的學生中隨機抽取2人,規(guī)定抽到的學生成績在[50,60)的記1績點分,在[60,80)的記2績點分,設抽取2人的總績點分為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)個正數(shù)滿足).

(1)當,證明:;

(2)當,不等式也成立,請你將其推廣到個正數(shù)的情形,歸納出一般性的結論并用數(shù)學歸納法證明.

查看答案和解析>>

同步練習冊答案